MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isga Structured version   Visualization version   GIF version

Theorem isga 17916
Description: The predicate "is a (left) group action." The group 𝐺 is said to act on the base set 𝑌 of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element 𝑔 of 𝐺 is a permutation of the elements of 𝑌 (see gapm 17931). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
isga.1 𝑋 = (Base‘𝐺)
isga.2 + = (+g𝐺)
isga.3 0 = (0g𝐺)
Assertion
Ref Expression
isga ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑦,𝑋,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑋(𝑥)   0 (𝑥,𝑦,𝑧)

Proof of Theorem isga
Dummy variables 𝑔 𝑏 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ga 17915 . . 3 GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠𝑚 (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
21elmpt2cl 7033 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V))
3 fvexd 6356 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) ∈ V)
4 simplr 809 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑠 = 𝑌)
5 id 22 . . . . . . . . . . 11 (𝑏 = (Base‘𝑔) → 𝑏 = (Base‘𝑔))
6 simpl 474 . . . . . . . . . . . . 13 ((𝑔 = 𝐺𝑠 = 𝑌) → 𝑔 = 𝐺)
76fveq2d 6348 . . . . . . . . . . . 12 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) = (Base‘𝐺))
8 isga.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
97, 8syl6eqr 2804 . . . . . . . . . . 11 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) = 𝑋)
105, 9sylan9eqr 2808 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑏 = 𝑋)
1110, 4xpeq12d 5289 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑏 × 𝑠) = (𝑋 × 𝑌))
124, 11oveq12d 6823 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑠𝑚 (𝑏 × 𝑠)) = (𝑌𝑚 (𝑋 × 𝑌)))
13 simpll 807 . . . . . . . . . . . . . 14 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑔 = 𝐺)
1413fveq2d 6348 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g𝑔) = (0g𝐺))
15 isga.3 . . . . . . . . . . . . 13 0 = (0g𝐺)
1614, 15syl6eqr 2804 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g𝑔) = 0 )
1716oveq1d 6820 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((0g𝑔)𝑚𝑥) = ( 0 𝑚𝑥))
1817eqeq1d 2754 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((0g𝑔)𝑚𝑥) = 𝑥 ↔ ( 0 𝑚𝑥) = 𝑥))
1913fveq2d 6348 . . . . . . . . . . . . . . . 16 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g𝑔) = (+g𝐺))
20 isga.2 . . . . . . . . . . . . . . . 16 + = (+g𝐺)
2119, 20syl6eqr 2804 . . . . . . . . . . . . . . 15 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g𝑔) = + )
2221oveqd 6822 . . . . . . . . . . . . . 14 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑦(+g𝑔)𝑧) = (𝑦 + 𝑧))
2322oveq1d 6820 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((𝑦(+g𝑔)𝑧)𝑚𝑥) = ((𝑦 + 𝑧)𝑚𝑥))
2423eqeq1d 2754 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2510, 24raleqbidv 3283 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2610, 25raleqbidv 3283 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2718, 26anbi12d 749 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))))
284, 27raleqbidv 3283 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))))
2912, 28rabeqbidv 3327 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → {𝑚 ∈ (𝑠𝑚 (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
303, 29csbied 3693 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠𝑚 (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
31 ovex 6833 . . . . . . 7 (𝑌𝑚 (𝑋 × 𝑌)) ∈ V
3231rabex 4956 . . . . . 6 {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ∈ V
3330, 1, 32ovmpt2a 6948 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝐺 GrpAct 𝑌) = {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
3433eleq2d 2817 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ∈ {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}))
35 oveq 6811 . . . . . . . 8 (𝑚 = → ( 0 𝑚𝑥) = ( 0 𝑥))
3635eqeq1d 2754 . . . . . . 7 (𝑚 = → (( 0 𝑚𝑥) = 𝑥 ↔ ( 0 𝑥) = 𝑥))
37 oveq 6811 . . . . . . . . 9 (𝑚 = → ((𝑦 + 𝑧)𝑚𝑥) = ((𝑦 + 𝑧) 𝑥))
38 oveq 6811 . . . . . . . . . 10 (𝑚 = → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 (𝑧𝑚𝑥)))
39 oveq 6811 . . . . . . . . . . 11 (𝑚 = → (𝑧𝑚𝑥) = (𝑧 𝑥))
4039oveq2d 6821 . . . . . . . . . 10 (𝑚 = → (𝑦 (𝑧𝑚𝑥)) = (𝑦 (𝑧 𝑥)))
4138, 40eqtrd 2786 . . . . . . . . 9 (𝑚 = → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 (𝑧 𝑥)))
4237, 41eqeq12d 2767 . . . . . . . 8 (𝑚 = → (((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))
43422ralbidv 3119 . . . . . . 7 (𝑚 = → (∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))
4436, 43anbi12d 749 . . . . . 6 (𝑚 = → ((( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4544ralbidv 3116 . . . . 5 (𝑚 = → (∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4645elrab 3496 . . . 4 ( ∈ {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ↔ ( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4734, 46syl6bb 276 . . 3 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
48 simpr 479 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
49 fvex 6354 . . . . . . 7 (Base‘𝐺) ∈ V
508, 49eqeltri 2827 . . . . . 6 𝑋 ∈ V
51 xpexg 7117 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V)
5250, 48, 51sylancr 698 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V)
5348, 52elmapd 8029 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ↔ :(𝑋 × 𝑌)⟶𝑌))
5453anbi1d 743 . . 3 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))) ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
5547, 54bitrd 268 . 2 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
562, 55biadan2 677 1 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1624  wcel 2131  wral 3042  {crab 3046  Vcvv 3332  csb 3666   × cxp 5256  wf 6037  cfv 6041  (class class class)co 6805  𝑚 cmap 8015  Basecbs 16051  +gcplusg 16135  0gc0g 16294  Grpcgrp 17615   GrpAct cga 17914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-map 8017  df-ga 17915
This theorem is referenced by:  gagrp  17917  gaset  17918  gagrpid  17919  gaf  17920  gaass  17922  ga0  17923  gaid  17924  subgga  17925  gass  17926  gasubg  17927  lactghmga  18016  sylow1lem2  18206  sylow2blem2  18228  sylow3lem1  18234
  Copyright terms: Public domain W3C validator