![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfsupp | Structured version Visualization version GIF version |
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
Ref | Expression |
---|---|
isfsupp | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 6070 | . . . 4 ⊢ (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅)) | |
2 | 1 | adantr 472 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅)) |
3 | oveq12 6824 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍)) | |
4 | 3 | eleq1d 2825 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin)) |
5 | 2, 4 | anbi12d 749 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
6 | df-fsupp 8444 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
7 | 5, 6 | brabga 5140 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 Fun wfun 6044 (class class class)co 6815 supp csupp 7465 Fincfn 8124 finSupp cfsupp 8443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-rel 5274 df-cnv 5275 df-co 5276 df-iota 6013 df-fun 6052 df-fv 6058 df-ov 6818 df-fsupp 8444 |
This theorem is referenced by: funisfsupp 8448 fsuppimp 8449 fdmfifsupp 8453 fczfsuppd 8461 fsuppmptif 8473 fsuppco2 8476 fsuppcor 8477 gsumzadd 18543 gsumpt 18582 gsum2dlem2 18591 gsum2d 18592 gsum2d2lem 18593 rmfsupp 42684 mndpfsupp 42686 scmfsupp 42688 mptcfsupp 42690 |
Copyright terms: Public domain | W3C validator |