![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4 | Structured version Visualization version GIF version |
Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
isfne4 | ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnerel 32631 | . . 3 ⊢ Rel Fne | |
2 | 1 | brrelex2i 5308 | . 2 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
3 | simpl 474 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌) | |
4 | isfne.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
5 | isfne.2 | . . . . 5 ⊢ 𝑌 = ∪ 𝐵 | |
6 | 3, 4, 5 | 3eqtr3g 2809 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 = ∪ 𝐵) |
7 | fvex 6354 | . . . . . . 7 ⊢ (topGen‘𝐵) ∈ V | |
8 | 7 | ssex 4946 | . . . . . 6 ⊢ (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V) |
9 | 8 | adantl 473 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V) |
10 | uniexb 7130 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
11 | 9, 10 | sylib 208 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 ∈ V) |
12 | 6, 11 | eqeltrrd 2832 | . . 3 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐵 ∈ V) |
13 | uniexb 7130 | . . 3 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
14 | 12, 13 | sylibr 224 | . 2 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
15 | 4, 5 | isfne 32632 | . . 3 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
16 | dfss3 3725 | . . . . 5 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
17 | eltg 20955 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
18 | 17 | ralbidv 3116 | . . . . 5 ⊢ (𝐵 ∈ V → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
19 | 16, 18 | syl5bb 272 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
20 | 19 | anbi2d 742 | . . 3 ⊢ (𝐵 ∈ V → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
21 | 15, 20 | bitr4d 271 | . 2 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
22 | 2, 14, 21 | pm5.21nii 367 | 1 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 Vcvv 3332 ∩ cin 3706 ⊆ wss 3707 𝒫 cpw 4294 ∪ cuni 4580 class class class wbr 4796 ‘cfv 6041 topGenctg 16292 Fnecfne 32629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-iota 6004 df-fun 6043 df-fv 6049 df-topgen 16298 df-fne 32630 |
This theorem is referenced by: isfne4b 32634 isfne2 32635 isfne3 32636 fnebas 32637 fnetg 32638 topfne 32647 fnemeet1 32659 fnemeet2 32660 fnejoin1 32661 fnejoin2 32662 |
Copyright terms: Public domain | W3C validator |