![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne2 | Structured version Visualization version GIF version |
Description: The predicate "𝐵 is finer than 𝐴." (Contributed by Jeff Hankins, 28-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
isfne2 | ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfne.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
2 | isfne.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
3 | 1, 2 | isfne4 32662 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
4 | dfss3 3733 | . . . 4 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
5 | eltg2b 20985 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) | |
6 | 5 | ralbidv 3124 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
7 | 4, 6 | syl5bb 272 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
8 | 7 | anbi2d 742 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
9 | 3, 8 | syl5bb 272 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ⊆ wss 3715 ∪ cuni 4588 class class class wbr 4804 ‘cfv 6049 topGenctg 16320 Fnecfne 32658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-topgen 16326 df-fne 32659 |
This theorem is referenced by: fness 32671 fneref 32672 fnessref 32679 |
Copyright terms: Public domain | W3C validator |