MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isflf Structured version   Visualization version   GIF version

Theorem isflf 22016
Description: The property of being a limit point of a function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
isflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐹   𝑜,𝐽,𝑠   𝑜,𝐿,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem isflf
StepHypRef Expression
1 flfval 22013 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2835 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
3 simp1 1129 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 20950 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
543ad2ant1 1126 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋𝐽)
6 filfbas 21871 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
763ad2ant2 1127 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐿 ∈ (fBas‘𝑌))
8 simp3 1131 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
9 fmfil 21967 . . . 4 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
105, 7, 8, 9syl3anc 1475 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
11 flimopn 21998 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿)))))
123, 10, 11syl2anc 565 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿)))))
13 elfm 21970 . . . . . . . 8 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑜𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
145, 7, 8, 13syl3anc 1475 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑜𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1514adantr 466 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑜𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
16 toponss 20951 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜𝐽) → 𝑜𝑋)
173, 16sylan 561 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → 𝑜𝑋)
1817biantrurd 516 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜 ↔ (𝑜𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1915, 18bitr4d 271 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
2019imbi2d 329 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
2120ralbidva 3133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑜𝐽 (𝐴𝑜𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
2221anbi2d 606 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿))) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
232, 12, 223bitrd 294 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070  wcel 2144  wral 3060  wrex 3061  wss 3721  cima 5252  wf 6027  cfv 6031  (class class class)co 6792  fBascfbas 19948  TopOnctopon 20934  Filcfil 21868   FilMap cfm 21956   fLim cflim 21957   fLimf cflf 21958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-map 8010  df-fbas 19957  df-fg 19958  df-top 20918  df-topon 20935  df-ntr 21044  df-nei 21122  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963
This theorem is referenced by:  flfelbas  22017  flffbas  22018  flftg  22019  cnpflfi  22022  cnpflf2  22023  txflf  22029  limcflf  23864  rrhre  30399
  Copyright terms: Public domain W3C validator