MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite Structured version   Visualization version   GIF version

Theorem isfinite 8587
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.)
Assertion
Ref Expression
isfinite (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)

Proof of Theorem isfinite
StepHypRef Expression
1 omex 8578 . 2 ω ∈ V
2 isfiniteg 8261 . 2 (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))
31, 2ax-mp 5 1 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 2030  Vcvv 3231   class class class wbr 4685  ωcom 7107  csdm 7996  Fincfn 7997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001
This theorem is referenced by:  fict  8588  infxpenlem  8874  pwsdompw  9064  cflim2  9123  axcc4dom  9301  domtriom  9303  fin41  9304  dominf  9305  infinf  9426  unirnfdomd  9427  dominfac  9433  cfpwsdom  9444  canthp1lem2  9513  pwfseqlem3  9520  pwfseqlem4a  9521  pwfseqlem4  9522  gchpwdom  9530  gchaleph  9531  gchhar  9539  omina  9551  gchina  9559  tskpr  9630  rexpen  15001  odinf  18026  fctop2  20857  dis1stc  21350  ovolfi  23308  iunmbl2  23371  dyadmbl  23414  f1ocnt  29687  sibfof  30530  mblfinlem1  33576  ovoliunnfl  33581  heiborlem3  33742  ctbnfien  37699  pellex  37716  numinfctb  37990  saluncl  40855  meadjun  40997  meaiunlelem  41003  omeunle  41051
  Copyright terms: Public domain W3C validator