![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfinite | Structured version Visualization version GIF version |
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.) |
Ref | Expression |
---|---|
isfinite | ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 8578 | . 2 ⊢ ω ∈ V | |
2 | isfiniteg 8261 | . 2 ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 ωcom 7107 ≺ csdm 7996 Fincfn 7997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 |
This theorem is referenced by: fict 8588 infxpenlem 8874 pwsdompw 9064 cflim2 9123 axcc4dom 9301 domtriom 9303 fin41 9304 dominf 9305 infinf 9426 unirnfdomd 9427 dominfac 9433 cfpwsdom 9444 canthp1lem2 9513 pwfseqlem3 9520 pwfseqlem4a 9521 pwfseqlem4 9522 gchpwdom 9530 gchaleph 9531 gchhar 9539 omina 9551 gchina 9559 tskpr 9630 rexpen 15001 odinf 18026 fctop2 20857 dis1stc 21350 ovolfi 23308 iunmbl2 23371 dyadmbl 23414 f1ocnt 29687 sibfof 30530 mblfinlem1 33576 ovoliunnfl 33581 heiborlem3 33742 ctbnfien 37699 pellex 37716 numinfctb 37990 saluncl 40855 meadjun 40997 meaiunlelem 41003 omeunle 41051 |
Copyright terms: Public domain | W3C validator |