MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin7-2 Structured version   Visualization version   GIF version

Theorem isfin7-2 9256
Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin7-2 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))

Proof of Theorem isfin7-2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin7 9161 . . . 4 (𝐴 ∈ FinVII → (𝐴 ∈ FinVII ↔ ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
21ibi 256 . . 3 (𝐴 ∈ FinVII → ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥)
3 isnum2 8809 . . . . 5 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 ensym 8046 . . . . . . . . 9 (𝑥𝐴𝐴𝑥)
5 simprl 809 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑥 ∈ On)
6 enfi 8217 . . . . . . . . . . . . . . 15 (𝐴𝑥 → (𝐴 ∈ Fin ↔ 𝑥 ∈ Fin))
7 onfin 8192 . . . . . . . . . . . . . . 15 (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω))
86, 7sylan9bbr 737 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐴𝑥) → (𝐴 ∈ Fin ↔ 𝑥 ∈ ω))
98biimprd 238 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴𝑥) → (𝑥 ∈ ω → 𝐴 ∈ Fin))
109con3d 148 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝐴𝑥) → (¬ 𝐴 ∈ Fin → ¬ 𝑥 ∈ ω))
1110impcom 445 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → ¬ 𝑥 ∈ ω)
125, 11eldifd 3618 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑥 ∈ (On ∖ ω))
13 simprr 811 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝐴𝑥)
1412, 13jca 553 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥))
154, 14sylanr2 686 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝑥𝐴)) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥))
1615ex 449 . . . . . . 7 𝐴 ∈ Fin → ((𝑥 ∈ On ∧ 𝑥𝐴) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥)))
1716reximdv2 3043 . . . . . 6 𝐴 ∈ Fin → (∃𝑥 ∈ On 𝑥𝐴 → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
1817com12 32 . . . . 5 (∃𝑥 ∈ On 𝑥𝐴 → (¬ 𝐴 ∈ Fin → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
193, 18sylbi 207 . . . 4 (𝐴 ∈ dom card → (¬ 𝐴 ∈ Fin → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
2019con1d 139 . . 3 (𝐴 ∈ dom card → (¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥𝐴 ∈ Fin))
212, 20syl5com 31 . 2 (𝐴 ∈ FinVII → (𝐴 ∈ dom card → 𝐴 ∈ Fin))
22 eldifi 3765 . . . . . . 7 (𝑥 ∈ (On ∖ ω) → 𝑥 ∈ On)
23 ensym 8046 . . . . . . 7 (𝐴𝑥𝑥𝐴)
24 isnumi 8810 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
2522, 23, 24syl2an 493 . . . . . 6 ((𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥) → 𝐴 ∈ dom card)
2625rexlimiva 3057 . . . . 5 (∃𝑥 ∈ (On ∖ ω)𝐴𝑥𝐴 ∈ dom card)
2726con3i 150 . . . 4 𝐴 ∈ dom card → ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥)
28 isfin7 9161 . . . 4 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
2927, 28syl5ibr 236 . . 3 (𝐴𝑉 → (¬ 𝐴 ∈ dom card → 𝐴 ∈ FinVII))
30 fin17 9254 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
3130a1i 11 . . 3 (𝐴𝑉 → (𝐴 ∈ Fin → 𝐴 ∈ FinVII))
3229, 31jad 174 . 2 (𝐴𝑉 → ((𝐴 ∈ dom card → 𝐴 ∈ Fin) → 𝐴 ∈ FinVII))
3321, 32impbid2 216 1 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2030  wrex 2942  cdif 3604   class class class wbr 4685  dom cdm 5143  Oncon0 5761  ωcom 7107  cen 7994  Fincfn 7997  cardccrd 8799  FinVIIcfin7 9144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-fin7 9151
This theorem is referenced by:  fin71num  9257  dffin7-2  9258
  Copyright terms: Public domain W3C validator