![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin6 | Structured version Visualization version GIF version |
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin6 | ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin6 9150 | . . 3 ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2𝑜 ∨ 𝑥 ≺ (𝑥 × 𝑥))} | |
2 | 1 | eleq2i 2722 | . 2 ⊢ (𝐴 ∈ FinVI ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2𝑜 ∨ 𝑥 ≺ (𝑥 × 𝑥))}) |
3 | relsdom 8004 | . . . . 5 ⊢ Rel ≺ | |
4 | 3 | brrelexi 5192 | . . . 4 ⊢ (𝐴 ≺ 2𝑜 → 𝐴 ∈ V) |
5 | 3 | brrelexi 5192 | . . . 4 ⊢ (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V) |
6 | 4, 5 | jaoi 393 | . . 3 ⊢ ((𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ V) |
7 | breq1 4688 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 2𝑜 ↔ 𝐴 ≺ 2𝑜)) | |
8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
9 | 8 | sqxpeqd 5175 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴)) |
10 | 8, 9 | breq12d 4698 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 × 𝑥) ↔ 𝐴 ≺ (𝐴 × 𝐴))) |
11 | 7, 10 | orbi12d 746 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≺ 2𝑜 ∨ 𝑥 ≺ (𝑥 × 𝑥)) ↔ (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴)))) |
12 | 6, 11 | elab3 3390 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2𝑜 ∨ 𝑥 ≺ (𝑥 × 𝑥))} ↔ (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
13 | 2, 12 | bitri 264 | 1 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 = wceq 1523 ∈ wcel 2030 {cab 2637 Vcvv 3231 class class class wbr 4685 × cxp 5141 2𝑜c2o 7599 ≺ csdm 7996 FinVIcfin6 9143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-dom 7999 df-sdom 8000 df-fin6 9150 |
This theorem is referenced by: fin56 9253 fin67 9255 |
Copyright terms: Public domain | W3C validator |