Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4-3 Structured version   Visualization version   GIF version

Theorem isfin4-3 9338
 Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 9320 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
isfin4-3 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 +𝑐 1𝑜))

Proof of Theorem isfin4-3
StepHypRef Expression
1 1on 7719 . . . 4 1𝑜 ∈ On
2 cdadom3 9211 . . . 4 ((𝐴 ∈ FinIV ∧ 1𝑜 ∈ On) → 𝐴 ≼ (𝐴 +𝑐 1𝑜))
31, 2mpan2 663 . . 3 (𝐴 ∈ FinIV𝐴 ≼ (𝐴 +𝑐 1𝑜))
4 ssun1 3925 . . . . . . . 8 (𝐴 × {∅}) ⊆ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
5 relen 8113 . . . . . . . . . 10 Rel ≈
65brrelexi 5298 . . . . . . . . 9 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → 𝐴 ∈ V)
7 cdaval 9193 . . . . . . . . 9 ((𝐴 ∈ V ∧ 1𝑜 ∈ On) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
86, 1, 7sylancl 566 . . . . . . . 8 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
94, 8syl5sseqr 3801 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ⊆ (𝐴 +𝑐 1𝑜))
10 0lt1o 7737 . . . . . . . . . 10 ∅ ∈ 1𝑜
11 1oex 7720 . . . . . . . . . . 11 1𝑜 ∈ V
1211snid 4345 . . . . . . . . . 10 1𝑜 ∈ {1𝑜}
13 opelxpi 5288 . . . . . . . . . 10 ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ {1𝑜}) → ⟨∅, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}))
1410, 12, 13mp2an 664 . . . . . . . . 9 ⟨∅, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})
15 elun2 3930 . . . . . . . . 9 (⟨∅, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}) → ⟨∅, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
1614, 15mp1i 13 . . . . . . . 8 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ⟨∅, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
1716, 8eleqtrrd 2852 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ⟨∅, 1𝑜⟩ ∈ (𝐴 +𝑐 1𝑜))
18 1n0 7728 . . . . . . . 8 1𝑜 ≠ ∅
19 opelxp2 5291 . . . . . . . . . 10 (⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 ∈ {∅})
20 elsni 4331 . . . . . . . . . 10 (1𝑜 ∈ {∅} → 1𝑜 = ∅)
2119, 20syl 17 . . . . . . . . 9 (⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 = ∅)
2221necon3ai 2967 . . . . . . . 8 (1𝑜 ≠ ∅ → ¬ ⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}))
2318, 22mp1i 13 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ¬ ⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}))
249, 17, 23ssnelpssd 3867 . . . . . 6 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ⊊ (𝐴 +𝑐 1𝑜))
25 0ex 4921 . . . . . . . 8 ∅ ∈ V
26 xpsneng 8200 . . . . . . . 8 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
276, 25, 26sylancl 566 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ≈ 𝐴)
28 entr 8160 . . . . . . 7 (((𝐴 × {∅}) ≈ 𝐴𝐴 ≈ (𝐴 +𝑐 1𝑜)) → (𝐴 × {∅}) ≈ (𝐴 +𝑐 1𝑜))
2927, 28mpancom 660 . . . . . 6 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ≈ (𝐴 +𝑐 1𝑜))
30 fin4i 9321 . . . . . 6 (((𝐴 × {∅}) ⊊ (𝐴 +𝑐 1𝑜) ∧ (𝐴 × {∅}) ≈ (𝐴 +𝑐 1𝑜)) → ¬ (𝐴 +𝑐 1𝑜) ∈ FinIV)
3124, 29, 30syl2anc 565 . . . . 5 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ¬ (𝐴 +𝑐 1𝑜) ∈ FinIV)
32 fin4en1 9332 . . . . 5 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 ∈ FinIV → (𝐴 +𝑐 1𝑜) ∈ FinIV))
3331, 32mtod 189 . . . 4 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ¬ 𝐴 ∈ FinIV)
3433con2i 136 . . 3 (𝐴 ∈ FinIV → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
35 brsdom 8131 . . 3 (𝐴 ≺ (𝐴 +𝑐 1𝑜) ↔ (𝐴 ≼ (𝐴 +𝑐 1𝑜) ∧ ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜)))
363, 34, 35sylanbrc 564 . 2 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 +𝑐 1𝑜))
37 sdomnen 8137 . . . 4 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
38 infcda1 9216 . . . . 5 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
3938ensymd 8159 . . . 4 (ω ≼ 𝐴𝐴 ≈ (𝐴 +𝑐 1𝑜))
4037, 39nsyl 137 . . 3 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ ω ≼ 𝐴)
41 relsdom 8115 . . . . 5 Rel ≺
4241brrelexi 5298 . . . 4 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → 𝐴 ∈ V)
43 isfin4-2 9337 . . . 4 (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4442, 43syl 17 . . 3 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4540, 44mpbird 247 . 2 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → 𝐴 ∈ FinIV)
4636, 45impbii 199 1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 +𝑐 1𝑜))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  Vcvv 3349   ∪ cun 3719   ⊊ wpss 3722  ∅c0 4061  {csn 4314  ⟨cop 4320   class class class wbr 4784   × cxp 5247  Oncon0 5866  (class class class)co 6792  ωcom 7211  1𝑜c1o 7705   ≈ cen 8105   ≼ cdom 8106   ≺ csdm 8107   +𝑐 ccda 9190  FinIVcfin4 9303 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-cda 9191  df-fin4 9310 This theorem is referenced by:  fin45  9415  finngch  9678  gchinf  9680
 Copyright terms: Public domain W3C validator