Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isexid Structured version   Visualization version   GIF version

Theorem isexid 33978
Description: The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
isexid (𝐺𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem isexid
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5462 . . . . 5 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
21dmeqd 5464 . . . 4 (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺)
3 isexid.1 . . . 4 𝑋 = dom dom 𝐺
42, 3syl6eqr 2823 . . 3 (𝑔 = 𝐺 → dom dom 𝑔 = 𝑋)
5 oveq 6799 . . . . . 6 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
65eqeq1d 2773 . . . . 5 (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = 𝑦 ↔ (𝑥𝐺𝑦) = 𝑦))
7 oveq 6799 . . . . . 6 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
87eqeq1d 2773 . . . . 5 (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = 𝑦 ↔ (𝑦𝐺𝑥) = 𝑦))
96, 8anbi12d 616 . . . 4 (𝑔 = 𝐺 → (((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
104, 9raleqbidv 3301 . . 3 (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∀𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
114, 10rexeqbidv 3302 . 2 (𝑔 = 𝐺 → (∃𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
12 df-exid 33976 . 2 ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)}
1311, 12elab2g 3504 1 (𝐺𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  dom cdm 5249  (class class class)co 6793   ExId cexid 33975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-dm 5259  df-iota 5994  df-fv 6039  df-ov 6796  df-exid 33976
This theorem is referenced by:  opidonOLD  33983  isexid2  33986  ismndo  34003  exidres  34009
  Copyright terms: Public domain W3C validator