Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserodd Structured version   Visualization version   GIF version

Theorem iserodd 15587
 Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
iserodd.f ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
iserodd.h (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
Assertion
Ref Expression
iserodd (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑛   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑛)   𝐶(𝑘)

Proof of Theorem iserodd
Dummy variables 𝑖 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11760 . 2 0 = (ℤ‘0)
2 nnuz 11761 . 2 ℕ = (ℤ‘1)
3 0zd 11427 . 2 (𝜑 → 0 ∈ ℤ)
4 1zzd 11446 . 2 (𝜑 → 1 ∈ ℤ)
5 2nn0 11347 . . . . . 6 2 ∈ ℕ0
65a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
7 nn0mulcl 11367 . . . . 5 ((2 ∈ ℕ0𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
86, 7sylan 487 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (2 · 𝑚) ∈ ℕ0)
9 nn0p1nn 11370 . . . 4 ((2 · 𝑚) ∈ ℕ0 → ((2 · 𝑚) + 1) ∈ ℕ)
108, 9syl 17 . . 3 ((𝜑𝑚 ∈ ℕ0) → ((2 · 𝑚) + 1) ∈ ℕ)
11 eqid 2651 . . 3 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))
1210, 11fmptd 6425 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)):ℕ0⟶ℕ)
13 nn0mulcl 11367 . . . . . 6 ((2 ∈ ℕ0𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
146, 13sylan 487 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℕ0)
1514nn0red 11390 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) ∈ ℝ)
16 peano2nn0 11371 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
17 nn0mulcl 11367 . . . . . 6 ((2 ∈ ℕ0 ∧ (𝑖 + 1) ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
186, 16, 17syl2an 493 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℕ0)
1918nn0red 11390 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · (𝑖 + 1)) ∈ ℝ)
20 1red 10093 . . . 4 ((𝜑𝑖 ∈ ℕ0) → 1 ∈ ℝ)
21 nn0re 11339 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
2221adantl 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
2322ltp1d 10992 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 < (𝑖 + 1))
2416adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℕ0)
2524nn0red 11390 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℝ)
26 2re 11128 . . . . . . 7 2 ∈ ℝ
2726a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 2 ∈ ℝ)
28 2pos 11150 . . . . . . 7 0 < 2
2928a1i 11 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 0 < 2)
30 ltmul2 10912 . . . . . 6 ((𝑖 ∈ ℝ ∧ (𝑖 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
3122, 25, 27, 29, 30syl112anc 1370 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 < (𝑖 + 1) ↔ (2 · 𝑖) < (2 · (𝑖 + 1))))
3223, 31mpbid 222 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (2 · 𝑖) < (2 · (𝑖 + 1)))
3315, 19, 20, 32ltadd1dd 10676 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((2 · 𝑖) + 1) < ((2 · (𝑖 + 1)) + 1))
34 oveq2 6698 . . . . . 6 (𝑚 = 𝑖 → (2 · 𝑚) = (2 · 𝑖))
3534oveq1d 6705 . . . . 5 (𝑚 = 𝑖 → ((2 · 𝑚) + 1) = ((2 · 𝑖) + 1))
36 ovex 6718 . . . . 5 ((2 · 𝑖) + 1) ∈ V
3735, 11, 36fvmpt 6321 . . . 4 (𝑖 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
3837adantl 481 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) = ((2 · 𝑖) + 1))
39 oveq2 6698 . . . . . 6 (𝑚 = (𝑖 + 1) → (2 · 𝑚) = (2 · (𝑖 + 1)))
4039oveq1d 6705 . . . . 5 (𝑚 = (𝑖 + 1) → ((2 · 𝑚) + 1) = ((2 · (𝑖 + 1)) + 1))
41 ovex 6718 . . . . 5 ((2 · (𝑖 + 1)) + 1) ∈ V
4240, 11, 41fvmpt 6321 . . . 4 ((𝑖 + 1) ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4324, 42syl 17 . . 3 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)) = ((2 · (𝑖 + 1)) + 1))
4433, 38, 433brtr4d 4717 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖) < ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘(𝑖 + 1)))
45 eldifi 3765 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) → 𝑛 ∈ ℕ)
46 simpr 476 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
47 0cnd 10071 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 ∈ ℂ)
48 nnz 11437 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4948adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
50 odd2np1 15112 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
5149, 50syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛))
52 simprl 809 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℤ)
53 nnm1nn0 11372 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5453ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℕ0)
5554nn0red 11390 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) ∈ ℝ)
5654nn0ge0d 11392 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ (𝑛 − 1))
5726a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℝ)
5828a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 < 2)
59 divge0 10930 . . . . . . . . . . . . . . . . . 18 ((((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑛 − 1) / 2))
6055, 56, 57, 58, 59syl22anc 1367 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ ((𝑛 − 1) / 2))
61 simprr 811 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) + 1) = 𝑛)
6261oveq1d 6705 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (𝑛 − 1))
63 2cn 11129 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
64 zcn 11420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6564ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℂ)
66 mulcl 10058 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
6763, 65, 66sylancr 696 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (2 · 𝑘) ∈ ℂ)
68 ax-1cn 10032 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
69 pncan 10325 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
7067, 68, 69sylancl 695 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
7162, 70eqtr3d 2687 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → (𝑛 − 1) = (2 · 𝑘))
7271oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = ((2 · 𝑘) / 2))
73 2cnd 11131 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ∈ ℂ)
74 2ne0 11151 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
7574a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 2 ≠ 0)
7665, 73, 75divcan3d 10844 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((2 · 𝑘) / 2) = 𝑘)
7772, 76eqtrd 2685 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → ((𝑛 − 1) / 2) = 𝑘)
7860, 77breqtrd 4711 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 0 ≤ 𝑘)
79 elnn0z 11428 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
8052, 78, 79sylanbrc 699 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ (𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛)) → 𝑘 ∈ ℕ0)
8180ex 449 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑘 ∈ ℕ0))
82 simpr 476 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → ((2 · 𝑘) + 1) = 𝑛)
8382eqcomd 2657 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1))
8483a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → 𝑛 = ((2 · 𝑘) + 1)))
8581, 84jcad 554 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = 𝑛) → (𝑘 ∈ ℕ0𝑛 = ((2 · 𝑘) + 1))))
8685reximdv2 3043 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
8751, 86sylbid 230 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
88 iserodd.f . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
89 iserodd.h . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑘) + 1) → 𝐵 = 𝐶)
9089eleq1d 2715 . . . . . . . . . . . . . 14 (𝑛 = ((2 · 𝑘) + 1) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
9188, 90syl5ibrcom 237 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9291rexlimdva 3060 . . . . . . . . . . . 12 (𝜑 → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9392adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1) → 𝐵 ∈ ℂ))
9487, 93syld 47 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝐵 ∈ ℂ))
9594imp 444 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝐵 ∈ ℂ)
9647, 95ifclda 4153 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ)
97 eqid 2651 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))
9897fvmpt2 6330 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ if(2 ∥ 𝑛, 0, 𝐵) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
9946, 96, 98syl2anc 694 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
10045, 99sylan2 490 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = if(2 ∥ 𝑛, 0, 𝐵))
101 eldif 3617 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
102 vex 3234 . . . . . . . . . . . 12 𝑛 ∈ V
103 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (2 · 𝑚) = (2 · 𝑘))
104103oveq1d 6705 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → ((2 · 𝑚) + 1) = ((2 · 𝑘) + 1))
105104cbvmptv 4783 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) = (𝑘 ∈ ℕ0 ↦ ((2 · 𝑘) + 1))
106105elrnmpt 5404 . . . . . . . . . . . 12 (𝑛 ∈ V → (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1)))
107102, 106ax-mp 5 . . . . . . . . . . 11 (𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) ↔ ∃𝑘 ∈ ℕ0 𝑛 = ((2 · 𝑘) + 1))
10887, 107syl6ibr 242 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))))
109108con1d 139 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)) → 2 ∥ 𝑛))
110109impr 648 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
111101, 110sylan2b 491 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → 2 ∥ 𝑛)
112111iftrued 4127 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → if(2 ∥ 𝑛, 0, 𝐵) = 0)
113100, 112eqtrd 2685 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
114113ralrimiva 2995 . . . 4 (𝜑 → ∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0)
115 nfv 1883 . . . . 5 𝑗((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0
116 nffvmpt1 6237 . . . . . 6 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗)
117116nfeq1 2807 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0
118 fveq2 6229 . . . . . 6 (𝑛 = 𝑗 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗))
119118eqeq1d 2653 . . . . 5 (𝑛 = 𝑗 → (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0))
120115, 117, 119cbvral 3197 . . . 4 (∀𝑛 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑛) = 0 ↔ ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
121114, 120sylib 208 . . 3 (𝜑 → ∀𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
122121r19.21bi 2961 . 2 ((𝜑𝑗 ∈ (ℕ ∖ ran (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1)))) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) = 0)
12396, 97fmptd 6425 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵)):ℕ⟶ℂ)
124123ffvelrnda 6399 . 2 ((𝜑𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘𝑗) ∈ ℂ)
125 simpr 476 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
126 eqid 2651 . . . . . . . 8 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
127126fvmpt2 6330 . . . . . . 7 ((𝑘 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
128125, 88, 127syl2anc 694 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = 𝐶)
129 ovex 6718 . . . . . . . . . 10 ((2 · 𝑘) + 1) ∈ V
130104, 11, 129fvmpt 6321 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
131130adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((2 · 𝑘) + 1))
132131fveq2d 6233 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)))
133 nn0mulcl 11367 . . . . . . . . . 10 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
1346, 133sylan 487 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
135 nn0p1nn 11370 . . . . . . . . 9 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
136134, 135syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
137 2z 11447 . . . . . . . . . . . 12 2 ∈ ℤ
138 nn0z 11438 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
139138adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
140 dvdsmul1 15050 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · 𝑘))
141137, 139, 140sylancr 696 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 2 ∥ (2 · 𝑘))
142134nn0zd 11518 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℤ)
143 2nn 11223 . . . . . . . . . . . . 13 2 ∈ ℕ
144143a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ)
145 1lt2 11232 . . . . . . . . . . . . 13 1 < 2
146145a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 < 2)
147 ndvdsp1 15182 . . . . . . . . . . . 12 (((2 · 𝑘) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
148142, 144, 146, 147syl3anc 1366 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 ∥ (2 · 𝑘) → ¬ 2 ∥ ((2 · 𝑘) + 1)))
149141, 148mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ¬ 2 ∥ ((2 · 𝑘) + 1))
150149iffalsed 4130 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) = 𝐶)
151150, 88eqeltrd 2730 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) ∈ ℂ)
152 breq2 4689 . . . . . . . . . 10 (𝑛 = ((2 · 𝑘) + 1) → (2 ∥ 𝑛 ↔ 2 ∥ ((2 · 𝑘) + 1)))
153152, 89ifbieq2d 4144 . . . . . . . . 9 (𝑛 = ((2 · 𝑘) + 1) → if(2 ∥ 𝑛, 0, 𝐵) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
154153, 97fvmptg 6319 . . . . . . . 8 ((((2 · 𝑘) + 1) ∈ ℕ ∧ if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
155136, 151, 154syl2anc 694 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((2 · 𝑘) + 1)) = if(2 ∥ ((2 · 𝑘) + 1), 0, 𝐶))
156132, 155, 1503eqtrd 2689 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = 𝐶)
157128, 156eqtr4d 2688 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
158157ralrimiva 2995 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)))
159 nfv 1883 . . . . 5 𝑖((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘))
160 nffvmpt1 6237 . . . . . 6 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖)
161160nfeq1 2807 . . . . 5 𝑘((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))
162 fveq2 6229 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑘 ∈ ℕ0𝐶)‘𝑖))
163 fveq2 6229 . . . . . . 7 (𝑘 = 𝑖 → ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘) = ((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))
164163fveq2d 6233 . . . . . 6 (𝑘 = 𝑖 → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
165162, 164eqeq12d 2666 . . . . 5 (𝑘 = 𝑖 → (((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖))))
166159, 161, 165cbvral 3197 . . . 4 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑘) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑘)) ↔ ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
167158, 166sylib 208 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
168167r19.21bi 2961 . 2 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑖) = ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))‘((𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 1))‘𝑖)))
1691, 2, 3, 4, 12, 44, 122, 124, 168isercoll2 14443 1 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0𝐶)) ⇝ 𝐴 ↔ seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 𝐵))) ⇝ 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ∖ cdif 3604  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℕcn 11058  2c2 11108  ℕ0cn0 11330  ℤcz 11415  seqcseq 12841   ⇝ cli 14259   ∥ cdvds 15027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-dvds 15028 This theorem is referenced by:  atantayl3  24711  leibpilem2  24713
 Copyright terms: Public domain W3C validator