![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iserd | Structured version Visualization version GIF version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
iserd.1 | ⊢ (𝜑 → Rel 𝑅) |
iserd.2 | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) |
iserd.3 | ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) |
iserd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) |
Ref | Expression |
---|---|
iserd | ⊢ (𝜑 → 𝑅 Er 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserd.1 | . . 3 ⊢ (𝜑 → Rel 𝑅) | |
2 | eqidd 2771 | . . 3 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
3 | iserd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) | |
4 | 3 | ex 397 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
5 | iserd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) | |
6 | 5 | ex 397 | . . . . . . 7 ⊢ (𝜑 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
7 | 4, 6 | jca 495 | . . . . . 6 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
8 | 7 | alrimiv 2006 | . . . . 5 ⊢ (𝜑 → ∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
9 | 8 | alrimiv 2006 | . . . 4 ⊢ (𝜑 → ∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
10 | 9 | alrimiv 2006 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
11 | dfer2 7896 | . . 3 ⊢ (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | |
12 | 1, 2, 10, 11 | syl3anbrc 1427 | . 2 ⊢ (𝜑 → 𝑅 Er dom 𝑅) |
13 | 12 | adantr 466 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅) |
14 | simpr 471 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅) | |
15 | 13, 14 | erref 7915 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥) |
16 | 15 | ex 397 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 → 𝑥𝑅𝑥)) |
17 | vex 3352 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
18 | 17, 17 | breldm 5467 | . . . . . 6 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) |
19 | 16, 18 | impbid1 215 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥𝑅𝑥)) |
20 | iserd.4 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) | |
21 | 19, 20 | bitr4d 271 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) |
22 | 21 | eqrdv 2768 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
23 | ereq2 7903 | . . 3 ⊢ (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) |
25 | 12, 24 | mpbid 222 | 1 ⊢ (𝜑 → 𝑅 Er 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1628 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 dom cdm 5249 Rel wrel 5254 Er wer 7892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-er 7895 |
This theorem is referenced by: iseri 7922 iseriALT 7923 swoer 7925 iiner 7970 erinxp 7972 cicer 16672 eqger 17851 gaorber 17947 efgrelexlemb 18369 efgcpbllemb 18374 hmpher 21807 xmeter 22457 ercgrg 25632 metider 30271 |
Copyright terms: Public domain | W3C validator |