MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem3 Structured version   Visualization version   GIF version

Theorem iseraltlem3 14458
Description: Lemma for iseralt 14459. From iseraltlem2 14457, we have (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) ≤ (-1↑𝑛) · 𝑆(𝑛) and (-1↑𝑛) · 𝑆(𝑛 + 1) ≤ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘 + 1), and we also have (-1↑𝑛) · 𝑆(𝑛 + 1) = (-1↑𝑛) · 𝑆(𝑛) − 𝐺(𝑛 + 1) for each 𝑛 by the definition of the partial sum 𝑆, so combining the inequalities we get (-1↑𝑛) · 𝑆(𝑛) − 𝐺(𝑛 + 1) = (-1↑𝑛) · 𝑆(𝑛 + 1) ≤ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘 + 1) = (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) − 𝐺(𝑛 + 2𝑘 + 1) ≤ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) ≤ (-1↑𝑛) · 𝑆(𝑛) ≤ (-1↑𝑛) · 𝑆(𝑛) + 𝐺(𝑛 + 1), so ∣ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘 + 1) − (-1↑𝑛) · 𝑆(𝑛) ∣ = 𝑆(𝑛 + 2𝑘 + 1) − 𝑆(𝑛) ∣ ≤ 𝐺(𝑛 + 1) and ∣ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) − (-1↑𝑛) · 𝑆(𝑛) ∣ = 𝑆(𝑛 + 2𝑘) − 𝑆(𝑛) ∣ ≤ 𝐺(𝑛 + 1). Thus, both even and odd partial sums are Cauchy if 𝐺 converges to 0. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseraltlem3 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝐾   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem3
StepHypRef Expression
1 neg1rr 11163 . . . . . . . . . 10 -1 ∈ ℝ
21a1i 11 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → -1 ∈ ℝ)
3 neg1ne0 11164 . . . . . . . . . 10 -1 ≠ 0
43a1i 11 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → -1 ≠ 0)
5 iseralt.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
6 uzssz 11745 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
75, 6eqsstri 3668 . . . . . . . . . 10 𝑍 ⊆ ℤ
8 simp2 1082 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝑁𝑍)
97, 8sseldi 3634 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
102, 4, 9reexpclzd 13074 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑𝑁) ∈ ℝ)
1110recnd 10106 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
12 iseralt.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
13 iseralt.6 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
141a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → -1 ∈ ℝ)
153a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → -1 ≠ 0)
16 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → 𝑘𝑍)
177, 16sseldi 3634 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
1814, 15, 17reexpclzd 13074 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
19 iseralt.3 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑍⟶ℝ)
2019ffvelrnda 6399 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
2118, 20remulcld 10108 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
2213, 21eqeltrd 2730 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
235, 12, 22serfre 12870 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
24233ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
258, 5syl6eleq 2740 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝑁 ∈ (ℤ𝑀))
26 2nn0 11347 . . . . . . . . . . . 12 2 ∈ ℕ0
27 simp3 1083 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
28 nn0mulcl 11367 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝐾 ∈ ℕ0) → (2 · 𝐾) ∈ ℕ0)
2926, 27, 28sylancr 696 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (2 · 𝐾) ∈ ℕ0)
30 uzaddcl 11782 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · 𝐾) ∈ ℕ0) → (𝑁 + (2 · 𝐾)) ∈ (ℤ𝑀))
3125, 29, 30syl2anc 694 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝑁 + (2 · 𝐾)) ∈ (ℤ𝑀))
3231, 5syl6eleqr 2741 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝑁 + (2 · 𝐾)) ∈ 𝑍)
3324, 32ffvelrnd 6400 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) ∈ ℝ)
3433recnd 10106 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) ∈ ℂ)
3524, 8ffvelrnd 6400 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
3635recnd 10106 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
3711, 34, 36subdid 10524 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
3837fveq2d 6233 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
3933, 35resubcld 10496 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
4039recnd 10106 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℂ)
4111, 40absmuld 14237 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) · (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))))
4238, 41eqtr3d 2687 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) · (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))))
432recnd 10106 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → -1 ∈ ℂ)
44 absexpz 14089 . . . . . . 7 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(-1↑𝑁)) = ((abs‘-1)↑𝑁))
4543, 4, 9, 44syl3anc 1366 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(-1↑𝑁)) = ((abs‘-1)↑𝑁))
46 ax-1cn 10032 . . . . . . . . . 10 1 ∈ ℂ
4746absnegi 14183 . . . . . . . . 9 (abs‘-1) = (abs‘1)
48 abs1 14081 . . . . . . . . 9 (abs‘1) = 1
4947, 48eqtri 2673 . . . . . . . 8 (abs‘-1) = 1
5049oveq1i 6700 . . . . . . 7 ((abs‘-1)↑𝑁) = (1↑𝑁)
51 1exp 12929 . . . . . . . 8 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
529, 51syl 17 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (1↑𝑁) = 1)
5350, 52syl5eq 2697 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((abs‘-1)↑𝑁) = 1)
5445, 53eqtrd 2685 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(-1↑𝑁)) = 1)
5554oveq1d 6705 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((abs‘(-1↑𝑁)) · (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = (1 · (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))))
5640abscld 14219 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℝ)
5756recnd 10106 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℂ)
5857mulid2d 10096 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (1 · (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))))
5942, 55, 583eqtrd 2689 . . 3 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))))
6010, 35remulcld 10108 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
61193ad2ant1 1102 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝐺:𝑍⟶ℝ)
625peano2uzs 11780 . . . . . . . 8 (𝑁𝑍 → (𝑁 + 1) ∈ 𝑍)
63623ad2ant2 1103 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝑁 + 1) ∈ 𝑍)
6461, 63ffvelrnd 6400 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) ∈ ℝ)
6560, 64resubcld 10496 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ∈ ℝ)
665peano2uzs 11780 . . . . . . . 8 ((𝑁 + (2 · 𝐾)) ∈ 𝑍 → ((𝑁 + (2 · 𝐾)) + 1) ∈ 𝑍)
6732, 66syl 17 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((𝑁 + (2 · 𝐾)) + 1) ∈ 𝑍)
6824, 67ffvelrnd 6400 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℝ)
6910, 68remulcld 10108 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ∈ ℝ)
7010, 33remulcld 10108 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ∈ ℝ)
71 seqp1 12856 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
7225, 71syl 17 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
7313ralrimiva 2995 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
74733ad2ant1 1102 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
75 fveq2 6229 . . . . . . . . . . . . . 14 (𝑘 = (𝑁 + 1) → (𝐹𝑘) = (𝐹‘(𝑁 + 1)))
76 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑘 = (𝑁 + 1) → (-1↑𝑘) = (-1↑(𝑁 + 1)))
77 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑘 = (𝑁 + 1) → (𝐺𝑘) = (𝐺‘(𝑁 + 1)))
7876, 77oveq12d 6708 . . . . . . . . . . . . . 14 (𝑘 = (𝑁 + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1))))
7975, 78eqeq12d 2666 . . . . . . . . . . . . 13 (𝑘 = (𝑁 + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘(𝑁 + 1)) = ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1)))))
8079rspcv 3336 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ 𝑍 → (∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) → (𝐹‘(𝑁 + 1)) = ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1)))))
8163, 74, 80sylc 65 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝐹‘(𝑁 + 1)) = ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1))))
8281oveq2d 6706 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1)))))
8343, 4, 9expp1zd 13057 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(𝑁 + 1)) = ((-1↑𝑁) · -1))
84 neg1cn 11162 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
85 mulcom 10060 . . . . . . . . . . . . . . 15 (((-1↑𝑁) ∈ ℂ ∧ -1 ∈ ℂ) → ((-1↑𝑁) · -1) = (-1 · (-1↑𝑁)))
8611, 84, 85sylancl 695 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · -1) = (-1 · (-1↑𝑁)))
8711mulm1d 10520 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1 · (-1↑𝑁)) = -(-1↑𝑁))
8883, 86, 873eqtrd 2689 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(𝑁 + 1)) = -(-1↑𝑁))
8988oveq1d 6705 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1))) = (-(-1↑𝑁) · (𝐺‘(𝑁 + 1))))
9064recnd 10106 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) ∈ ℂ)
9111, 90mulneg1d 10521 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-(-1↑𝑁) · (𝐺‘(𝑁 + 1))) = -((-1↑𝑁) · (𝐺‘(𝑁 + 1))))
9289, 91eqtrd 2685 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1))) = -((-1↑𝑁) · (𝐺‘(𝑁 + 1))))
9392oveq2d 6706 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘𝑁) + ((-1↑(𝑁 + 1)) · (𝐺‘(𝑁 + 1)))) = ((seq𝑀( + , 𝐹)‘𝑁) + -((-1↑𝑁) · (𝐺‘(𝑁 + 1)))))
9472, 82, 933eqtrd 2689 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + -((-1↑𝑁) · (𝐺‘(𝑁 + 1)))))
9510, 64remulcld 10108 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (𝐺‘(𝑁 + 1))) ∈ ℝ)
9695recnd 10106 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (𝐺‘(𝑁 + 1))) ∈ ℂ)
9736, 96negsubd 10436 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘𝑁) + -((-1↑𝑁) · (𝐺‘(𝑁 + 1)))) = ((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1)))))
9894, 97eqtrd 2685 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1)))))
9998oveq2d 6706 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))))
10011, 36, 96subdid 10524 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘𝑁) − ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))))
1019zcnd 11521 . . . . . . . . . . . . . . 15 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝑁 ∈ ℂ)
1021012timesd 11313 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (2 · 𝑁) = (𝑁 + 𝑁))
103102oveq2d 6706 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
104 2z 11447 . . . . . . . . . . . . . . 15 2 ∈ ℤ
105104a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 2 ∈ ℤ)
106 expmulz 12946 . . . . . . . . . . . . . 14 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(2 · 𝑁)) = ((-1↑2)↑𝑁))
10743, 4, 105, 9, 106syl22anc 1367 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(2 · 𝑁)) = ((-1↑2)↑𝑁))
108103, 107eqtr3d 2687 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑2)↑𝑁))
109 neg1sqe1 12999 . . . . . . . . . . . . 13 (-1↑2) = 1
110109oveq1i 6700 . . . . . . . . . . . 12 ((-1↑2)↑𝑁) = (1↑𝑁)
111108, 110syl6eq 2701 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = (1↑𝑁))
112 expaddz 12944 . . . . . . . . . . . 12 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
11343, 4, 9, 9, 112syl22anc 1367 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
114111, 113, 523eqtr3d 2693 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
115114oveq1d 6705 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (𝐺‘(𝑁 + 1))) = (1 · (𝐺‘(𝑁 + 1))))
11611, 11, 90mulassd 10101 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (𝐺‘(𝑁 + 1))) = ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘(𝑁 + 1)))))
11790mulid2d 10096 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (1 · (𝐺‘(𝑁 + 1))) = (𝐺‘(𝑁 + 1)))
118115, 116, 1173eqtr3d 2693 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘(𝑁 + 1)))) = (𝐺‘(𝑁 + 1)))
119118oveq2d 6706 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘(𝑁 + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))))
12099, 100, 1193eqtrd 2689 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))))
121 iseralt.4 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
122 iseralt.5 . . . . . . . . . . 11 (𝜑𝐺 ⇝ 0)
1235, 12, 19, 121, 122, 13iseraltlem2 14457 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 + 1) ∈ 𝑍𝐾 ∈ ℕ0) → ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾)))) ≤ ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))))
12462, 123syl3an2 1400 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾)))) ≤ ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))))
125 1cnd 10094 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 1 ∈ ℂ)
12629nn0cnd 11391 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (2 · 𝐾) ∈ ℂ)
127101, 125, 126add32d 10301 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((𝑁 + 1) + (2 · 𝐾)) = ((𝑁 + (2 · 𝐾)) + 1))
128127fveq2d 6233 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾))) = (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)))
12988, 128oveq12d 6708 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘((𝑁 + 1) + (2 · 𝐾)))) = (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))))
13088oveq1d 6705 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑(𝑁 + 1)) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))) = (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))))
131124, 129, 1303brtr3d 4716 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))))
13268recnd 10106 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℂ)
13311, 132mulneg1d 10521 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) = -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))))
13424, 63ffvelrnd 6400 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) ∈ ℝ)
135134recnd 10106 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) ∈ ℂ)
13611, 135mulneg1d 10521 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-(-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))) = -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))))
137131, 133, 1363brtr3d 4716 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))))
13810, 134remulcld 10108 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))) ∈ ℝ)
139138, 69lenegd 10644 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ↔ -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ -((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1)))))
140137, 139mpbird 247 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))))
141120, 140eqbrtrrd 4709 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))))
142 seqp1 12856 . . . . . . . . . 10 ((𝑁 + (2 · 𝐾)) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + (𝐹‘((𝑁 + (2 · 𝐾)) + 1))))
14331, 142syl 17 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + (𝐹‘((𝑁 + (2 · 𝐾)) + 1))))
144 fveq2 6229 . . . . . . . . . . . . . 14 (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → (𝐹𝑘) = (𝐹‘((𝑁 + (2 · 𝐾)) + 1)))
145 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → (-1↑𝑘) = (-1↑((𝑁 + (2 · 𝐾)) + 1)))
146 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → (𝐺𝑘) = (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))
147145, 146oveq12d 6708 . . . . . . . . . . . . . 14 (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
148144, 147eqeq12d 2666 . . . . . . . . . . . . 13 (𝑘 = ((𝑁 + (2 · 𝐾)) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘((𝑁 + (2 · 𝐾)) + 1)) = ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))
149148rspcv 3336 . . . . . . . . . . . 12 (((𝑁 + (2 · 𝐾)) + 1) ∈ 𝑍 → (∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) → (𝐹‘((𝑁 + (2 · 𝐾)) + 1)) = ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))
15067, 74, 149sylc 65 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝐾)) + 1)) = ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
1517, 63sseldi 3634 . . . . . . . . . . . . . . 15 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
15229nn0zd 11518 . . . . . . . . . . . . . . 15 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (2 · 𝐾) ∈ ℤ)
153 expaddz 12944 . . . . . . . . . . . . . . 15 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((𝑁 + 1) ∈ ℤ ∧ (2 · 𝐾) ∈ ℤ)) → (-1↑((𝑁 + 1) + (2 · 𝐾))) = ((-1↑(𝑁 + 1)) · (-1↑(2 · 𝐾))))
15443, 4, 151, 152, 153syl22anc 1367 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑((𝑁 + 1) + (2 · 𝐾))) = ((-1↑(𝑁 + 1)) · (-1↑(2 · 𝐾))))
15527nn0zd 11518 . . . . . . . . . . . . . . . . 17 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
156 expmulz 12946 . . . . . . . . . . . . . . . . 17 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (-1↑(2 · 𝐾)) = ((-1↑2)↑𝐾))
15743, 4, 105, 155, 156syl22anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(2 · 𝐾)) = ((-1↑2)↑𝐾))
158109oveq1i 6700 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑𝐾) = (1↑𝐾)
159 1exp 12929 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → (1↑𝐾) = 1)
160155, 159syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (1↑𝐾) = 1)
161158, 160syl5eq 2697 . . . . . . . . . . . . . . . 16 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑2)↑𝐾) = 1)
162157, 161eqtrd 2685 . . . . . . . . . . . . . . 15 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑(2 · 𝐾)) = 1)
16388, 162oveq12d 6708 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑(𝑁 + 1)) · (-1↑(2 · 𝐾))) = (-(-1↑𝑁) · 1))
164154, 163eqtrd 2685 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑((𝑁 + 1) + (2 · 𝐾))) = (-(-1↑𝑁) · 1))
165127oveq2d 6706 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑((𝑁 + 1) + (2 · 𝐾))) = (-1↑((𝑁 + (2 · 𝐾)) + 1)))
16611negcld 10417 . . . . . . . . . . . . . 14 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → -(-1↑𝑁) ∈ ℂ)
167166mulid1d 10095 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-(-1↑𝑁) · 1) = -(-1↑𝑁))
168164, 165, 1673eqtr3d 2693 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝐾)) + 1)) = -(-1↑𝑁))
169168oveq1d 6705 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝐾)) + 1)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = (-(-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
17061, 67ffvelrnd 6400 . . . . . . . . . . . . 13 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℝ)
171170recnd 10106 . . . . . . . . . . . 12 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝐾)) + 1)) ∈ ℂ)
17211, 171mulneg1d 10521 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (-(-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
173150, 169, 1723eqtrd 2689 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝐾)) + 1)) = -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
174173oveq2d 6706 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + (𝐹‘((𝑁 + (2 · 𝐾)) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))
17510, 170remulcld 10108 . . . . . . . . . . 11 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ∈ ℝ)
176175recnd 10106 . . . . . . . . . 10 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ∈ ℂ)
17734, 176negsubd 10436 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) + -((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))
178143, 174, 1773eqtrd 2689 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))
179178oveq2d 6706 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))))
18011, 34, 176subdid 10524 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))))
181114oveq1d 6705 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = (1 · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
18211, 11, 171mulassd 10101 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))))
183171mulid2d 10096 . . . . . . . . 9 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (1 · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) = (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))
184181, 182, 1833eqtr3d 2693 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))) = (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))
185184oveq2d 6706 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · ((-1↑𝑁) · (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
186179, 180, 1853eqtrd 2689 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1))))
187 simp1 1081 . . . . . . . 8 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 𝜑)
1885, 12, 19, 121, 122iseraltlem1 14456 . . . . . . . 8 ((𝜑 ∧ ((𝑁 + (2 · 𝐾)) + 1) ∈ 𝑍) → 0 ≤ (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))
189187, 67, 188syl2anc 694 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 0 ≤ (𝐺‘((𝑁 + (2 · 𝐾)) + 1)))
19070, 170subge02d 10657 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (0 ≤ (𝐺‘((𝑁 + (2 · 𝐾)) + 1)) ↔ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))))
191189, 190mpbid 222 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − (𝐺‘((𝑁 + (2 · 𝐾)) + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))
192186, 191eqbrtrd 4707 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))
19365, 69, 70, 141, 192letrd 10232 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))
19460, 64readdcld 10107 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))) ∈ ℝ)
1955, 12, 19, 121, 122, 13iseraltlem2 14457 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
1965, 12, 19, 121, 122iseraltlem1 14456 . . . . . . 7 ((𝜑 ∧ (𝑁 + 1) ∈ 𝑍) → 0 ≤ (𝐺‘(𝑁 + 1)))
197187, 63, 196syl2anc 694 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → 0 ≤ (𝐺‘(𝑁 + 1)))
19860, 64addge01d 10653 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (0 ≤ (𝐺‘(𝑁 + 1)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1)))))
199197, 198mpbid 222 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))))
20070, 60, 194, 195, 199letrd 10232 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))))
20170, 60, 64absdifled 14217 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1)) ↔ ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))))))
202193, 200, 201mpbir2and 977 . . 3 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1)))
20359, 202eqbrtrrd 4709 . 2 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)))
20411, 132, 36subdid 10524 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
205204fveq2d 6233 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
20668, 35resubcld 10496 . . . . . . 7 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
207206recnd 10106 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℂ)
20811, 207absmuld 14237 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) · (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))))
209205, 208eqtr3d 2687 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = ((abs‘(-1↑𝑁)) · (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))))
21054oveq1d 6705 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((abs‘(-1↑𝑁)) · (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = (1 · (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))))
211207abscld 14219 . . . . . 6 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℝ)
212211recnd 10106 . . . . 5 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ∈ ℂ)
213212mulid2d 10096 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (1 · (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))))
214209, 210, 2133eqtrd 2689 . . 3 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))))
21569, 70, 194, 192, 200letrd 10232 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))))
21669, 60, 64absdifled 14217 . . . 4 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1)) ↔ ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) − (𝐺‘(𝑁 + 1))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) + (𝐺‘(𝑁 + 1))))))
217141, 215, 216mpbir2and 977 . . 3 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘(((-1↑𝑁) · (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1))) − ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))) ≤ (𝐺‘(𝑁 + 1)))
218214, 217eqbrtrrd 4709 . 2 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)))
219203, 218jca 553 1 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  cmin 10304  -cneg 10305  2c2 11108  0cn0 11330  cz 11415  cuz 11725  seqcseq 12841  cexp 12900  abscabs 14018  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264
This theorem is referenced by:  iseralt  14459
  Copyright terms: Public domain W3C validator