![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isepi | Structured version Visualization version GIF version |
Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
isepi.b | ⊢ 𝐵 = (Base‘𝐶) |
isepi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isepi.o | ⊢ · = (comp‘𝐶) |
isepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
isepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isepi | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2752 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | isepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 16571 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2752 | . . 3 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
5 | eqid 2752 | . . 3 ⊢ (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) | |
6 | eqid 2752 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
7 | isepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | 1 | oppccat 16575 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
10 | isepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | isepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 3, 4, 5, 6, 9, 10, 11 | ismon 16586 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))))) |
13 | isepi.e | . . . 4 ⊢ 𝐸 = (Epi‘𝐶) | |
14 | 1, 7, 6, 13 | oppcmon 16591 | . . 3 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
15 | 14 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐸𝑌))) |
16 | isepi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
17 | 16, 1 | oppchom 16568 | . . . . 5 ⊢ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)) |
19 | 18 | eleq2d 2817 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ↔ 𝐹 ∈ (𝑋𝐻𝑌))) |
20 | 16, 1 | oppchom 16568 | . . . . . . . 8 ⊢ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧(Hom ‘(oppCat‘𝐶))𝑌) = (𝑌𝐻𝑧)) |
22 | isepi.o | . . . . . . . 8 ⊢ · = (comp‘𝐶) | |
23 | simpr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) | |
24 | 10 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
25 | 11 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
26 | 2, 22, 1, 23, 24, 25 | oppcco 16570 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔) = (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) |
27 | 21, 26 | mpteq12dv 4877 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
28 | 27 | cnveqd 5445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) = ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) |
29 | 28 | funeqd 6063 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
30 | 29 | ralbidva 3115 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔)) ↔ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) |
31 | 19, 30 | anbi12d 749 | . 2 ⊢ (𝜑 → ((𝐹 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧(Hom ‘(oppCat‘𝐶))𝑌) ↦ (𝐹(〈𝑧, 𝑌〉(comp‘(oppCat‘𝐶))𝑋)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
32 | 12, 15, 31 | 3bitr3d 298 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 〈cop 4319 ↦ cmpt 4873 ◡ccnv 5257 Fun wfun 6035 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 Hom chom 16146 compcco 16147 Catccat 16518 oppCatcoppc 16564 Monocmon 16581 Epicepi 16582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-hom 16160 df-cco 16161 df-cat 16522 df-cid 16523 df-oppc 16565 df-mon 16583 df-epi 16584 |
This theorem is referenced by: isepi2 16594 epihom 16595 |
Copyright terms: Public domain | W3C validator |