MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn2 Structured version   Visualization version   GIF version

Theorem isdomn2 19514
Description: A ring is a domain iff all nonzero elements are nonzero-divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b 𝐵 = (Base‘𝑅)
isdomn2.t 𝐸 = (RLReg‘𝑅)
isdomn2.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))

Proof of Theorem isdomn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2771 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn2.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 19509 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 dfss3 3741 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸)
6 isdomn2.t . . . . . . . . 9 𝐸 = (RLReg‘𝑅)
76, 1, 2, 3isrrg 19503 . . . . . . . 8 (𝑥𝐸 ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
87baib 525 . . . . . . 7 (𝑥𝐵 → (𝑥𝐸 ↔ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
98imbi2d 329 . . . . . 6 (𝑥𝐵 → ((𝑥0𝑥𝐸) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ))))
109ralbiia 3128 . . . . 5 (∀𝑥𝐵 (𝑥0𝑥𝐸) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
11 eldifsn 4453 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
1211imbi1i 338 . . . . . . 7 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ ((𝑥𝐵𝑥0 ) → 𝑥𝐸))
13 impexp 437 . . . . . . 7 (((𝑥𝐵𝑥0 ) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1412, 13bitri 264 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1514ralbii2 3127 . . . . 5 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵 (𝑥0𝑥𝐸))
16 con34b 305 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
17 impexp 437 . . . . . . . . . 10 (((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
18 ioran 964 . . . . . . . . . . 11 (¬ (𝑥 = 0𝑦 = 0 ) ↔ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ))
1918imbi1i 338 . . . . . . . . . 10 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ ((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
20 df-ne 2944 . . . . . . . . . . 11 (𝑥0 ↔ ¬ 𝑥 = 0 )
21 con34b 305 . . . . . . . . . . 11 (((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ) ↔ (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2220, 21imbi12i 339 . . . . . . . . . 10 ((𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
2317, 19, 223bitr4i 292 . . . . . . . . 9 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2416, 23bitri 264 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2524ralbii 3129 . . . . . . 7 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
26 r19.21v 3109 . . . . . . 7 (∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2725, 26bitri 264 . . . . . 6 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2827ralbii 3129 . . . . 5 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2910, 15, 283bitr4i 292 . . . 4 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
305, 29bitr2i 265 . . 3 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸)
3130anbi2i 609 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
324, 31bitri 264 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 834   = wceq 1631  wcel 2145  wne 2943  wral 3061  cdif 3720  wss 3723  {csn 4316  cfv 6031  (class class class)co 6793  Basecbs 16064  .rcmulr 16150  0gc0g 16308  NzRingcnzr 19472  RLRegcrlreg 19494  Domncdomn 19495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-rlreg 19498  df-domn 19499
This theorem is referenced by:  domnrrg  19515  drngdomn  19518
  Copyright terms: Public domain W3C validator