Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn3 Structured version   Visualization version   GIF version

Theorem isdmn3 34178
 Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
isdmn3.1 𝐺 = (1st𝑅)
isdmn3.2 𝐻 = (2nd𝑅)
isdmn3.3 𝑋 = ran 𝐺
isdmn3.4 𝑍 = (GId‘𝐺)
isdmn3.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdmn3 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
Distinct variable groups:   𝑅,𝑎,𝑏   𝑍,𝑎,𝑏   𝐻,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)

Proof of Theorem isdmn3
StepHypRef Expression
1 isdmn2 34159 . 2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
2 isdmn3.1 . . . . . 6 𝐺 = (1st𝑅)
3 isdmn3.4 . . . . . 6 𝑍 = (GId‘𝐺)
42, 3isprrngo 34154 . . . . 5 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
5 isdmn3.2 . . . . . . 7 𝐻 = (2nd𝑅)
6 isdmn3.3 . . . . . . 7 𝑋 = ran 𝐺
72, 5, 6ispridlc 34174 . . . . . 6 (𝑅 ∈ CRingOps → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))))
8 crngorngo 34104 . . . . . . 7 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
98biantrurd 530 . . . . . 6 (𝑅 ∈ CRingOps → ({𝑍} ∈ (PrIdl‘𝑅) ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))))
10 3anass 1081 . . . . . . 7 (({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ ({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))))
112, 30idl 34129 . . . . . . . . . 10 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
128, 11syl 17 . . . . . . . . 9 (𝑅 ∈ CRingOps → {𝑍} ∈ (Idl‘𝑅))
1312biantrurd 530 . . . . . . . 8 (𝑅 ∈ CRingOps → (({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ ({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))))))
142rneqi 5499 . . . . . . . . . . . . . . 15 ran 𝐺 = ran (1st𝑅)
156, 14eqtri 2774 . . . . . . . . . . . . . 14 𝑋 = ran (1st𝑅)
16 isdmn3.5 . . . . . . . . . . . . . 14 𝑈 = (GId‘𝐻)
1715, 5, 16rngo1cl 34043 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → 𝑈𝑋)
18 eleq2 2820 . . . . . . . . . . . . . 14 ({𝑍} = 𝑋 → (𝑈 ∈ {𝑍} ↔ 𝑈𝑋))
19 elsni 4330 . . . . . . . . . . . . . 14 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
2018, 19syl6bir 244 . . . . . . . . . . . . 13 ({𝑍} = 𝑋 → (𝑈𝑋𝑈 = 𝑍))
2117, 20syl5com 31 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → ({𝑍} = 𝑋𝑈 = 𝑍))
222, 5, 3, 16, 6rngoueqz 34044 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜𝑈 = 𝑍))
232, 6, 3rngo0cl 34023 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝑍𝑋)
24 en1eqsn 8347 . . . . . . . . . . . . . . . 16 ((𝑍𝑋𝑋 ≈ 1𝑜) → 𝑋 = {𝑍})
2524eqcomd 2758 . . . . . . . . . . . . . . 15 ((𝑍𝑋𝑋 ≈ 1𝑜) → {𝑍} = 𝑋)
2625ex 449 . . . . . . . . . . . . . 14 (𝑍𝑋 → (𝑋 ≈ 1𝑜 → {𝑍} = 𝑋))
2723, 26syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜 → {𝑍} = 𝑋))
2822, 27sylbird 250 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → (𝑈 = 𝑍 → {𝑍} = 𝑋))
2921, 28impbid 202 . . . . . . . . . . 11 (𝑅 ∈ RingOps → ({𝑍} = 𝑋𝑈 = 𝑍))
308, 29syl 17 . . . . . . . . . 10 (𝑅 ∈ CRingOps → ({𝑍} = 𝑋𝑈 = 𝑍))
3130necon3bid 2968 . . . . . . . . 9 (𝑅 ∈ CRingOps → ({𝑍} ≠ 𝑋𝑈𝑍))
32 ovex 6833 . . . . . . . . . . . . 13 (𝑎𝐻𝑏) ∈ V
3332elsn 4328 . . . . . . . . . . . 12 ((𝑎𝐻𝑏) ∈ {𝑍} ↔ (𝑎𝐻𝑏) = 𝑍)
34 velsn 4329 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑍} ↔ 𝑎 = 𝑍)
35 velsn 4329 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑍} ↔ 𝑏 = 𝑍)
3634, 35orbi12i 544 . . . . . . . . . . . 12 ((𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}) ↔ (𝑎 = 𝑍𝑏 = 𝑍))
3733, 36imbi12i 339 . . . . . . . . . . 11 (((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))
3837a1i 11 . . . . . . . . . 10 (𝑅 ∈ CRingOps → (((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
39382ralbidv 3119 . . . . . . . . 9 (𝑅 ∈ CRingOps → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
4031, 39anbi12d 749 . . . . . . . 8 (𝑅 ∈ CRingOps → (({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4113, 40bitr3d 270 . . . . . . 7 (𝑅 ∈ CRingOps → (({𝑍} ∈ (Idl‘𝑅) ∧ ({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4210, 41syl5bb 272 . . . . . 6 (𝑅 ∈ CRingOps → (({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
437, 9, 423bitr3d 298 . . . . 5 (𝑅 ∈ CRingOps → ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
444, 43syl5bb 272 . . . 4 (𝑅 ∈ CRingOps → (𝑅 ∈ PrRing ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4544pm5.32i 672 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing) ↔ (𝑅 ∈ CRingOps ∧ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
46 ancom 465 . . 3 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps) ↔ (𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing))
47 3anass 1081 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))) ↔ (𝑅 ∈ CRingOps ∧ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4845, 46, 473bitr4i 292 . 2 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps) ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
491, 48bitri 264 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∀wral 3042  {csn 4313   class class class wbr 4796  ran crn 5259  ‘cfv 6041  (class class class)co 6805  1st c1st 7323  2nd c2nd 7324  1𝑜c1o 7714   ≈ cen 8110  GIdcgi 27645  RingOpscrngo 33998  CRingOpsccring 34097  Idlcidl 34111  PrIdlcpridl 34112  PrRingcprrng 34150  Dmncdmn 34151 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-1o 7721  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-grpo 27648  df-gid 27649  df-ginv 27650  df-ablo 27700  df-ass 33947  df-exid 33949  df-mgmOLD 33953  df-sgrOLD 33965  df-mndo 33971  df-rngo 33999  df-com2 34094  df-crngo 34098  df-idl 34114  df-pridl 34115  df-prrngo 34152  df-dmn 34153  df-igen 34164 This theorem is referenced by:  dmnnzd  34179
 Copyright terms: Public domain W3C validator