Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdivrngo Structured version   Visualization version   GIF version

Theorem isdivrngo 33420
Description: The predicate "is a division ring". (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.)
Assertion
Ref Expression
isdivrngo (𝐻𝐴 → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))

Proof of Theorem isdivrngo
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4624 . . . . 5 (𝐺DivRingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ DivRingOps)
2 df-drngo 33419 . . . . . . 7 DivRingOps = {⟨𝑥, 𝑦⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ RingOps ∧ (𝑦 ↾ ((ran 𝑥 ∖ {(GId‘𝑥)}) × (ran 𝑥 ∖ {(GId‘𝑥)}))) ∈ GrpOp)}
32relopabi 5215 . . . . . 6 Rel DivRingOps
43brrelexi 5128 . . . . 5 (𝐺DivRingOps𝐻𝐺 ∈ V)
51, 4sylbir 225 . . . 4 (⟨𝐺, 𝐻⟩ ∈ DivRingOps → 𝐺 ∈ V)
65anim1i 591 . . 3 ((⟨𝐺, 𝐻⟩ ∈ DivRingOps ∧ 𝐻𝐴) → (𝐺 ∈ V ∧ 𝐻𝐴))
76ancoms 469 . 2 ((𝐻𝐴 ∧ ⟨𝐺, 𝐻⟩ ∈ DivRingOps) → (𝐺 ∈ V ∧ 𝐻𝐴))
8 rngoablo2 33379 . . . . 5 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
9 elex 3202 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ V)
108, 9syl 17 . . . 4 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ V)
1110ad2antrl 763 . . 3 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → 𝐺 ∈ V)
12 simpl 473 . . 3 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → 𝐻𝐴)
1311, 12jca 554 . 2 ((𝐻𝐴 ∧ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)) → (𝐺 ∈ V ∧ 𝐻𝐴))
14 df-drngo 33419 . . . 4 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
1514eleq2i 2690 . . 3 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ ⟨𝐺, 𝐻⟩ ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)})
16 opeq1 4377 . . . . . 6 (𝑔 = 𝐺 → ⟨𝑔, ⟩ = ⟨𝐺, ⟩)
1716eleq1d 2683 . . . . 5 (𝑔 = 𝐺 → (⟨𝑔, ⟩ ∈ RingOps ↔ ⟨𝐺, ⟩ ∈ RingOps))
18 rneq 5321 . . . . . . . . 9 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
19 fveq2 6158 . . . . . . . . . 10 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
2019sneqd 4167 . . . . . . . . 9 (𝑔 = 𝐺 → {(GId‘𝑔)} = {(GId‘𝐺)})
2118, 20difeq12d 3713 . . . . . . . 8 (𝑔 = 𝐺 → (ran 𝑔 ∖ {(GId‘𝑔)}) = (ran 𝐺 ∖ {(GId‘𝐺)}))
2221sqxpeqd 5111 . . . . . . 7 (𝑔 = 𝐺 → ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})))
2322reseq2d 5366 . . . . . 6 (𝑔 = 𝐺 → ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) = ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))))
2423eleq1d 2683 . . . . 5 (𝑔 = 𝐺 → (( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp ↔ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
2517, 24anbi12d 746 . . . 4 (𝑔 = 𝐺 → ((⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp) ↔ (⟨𝐺, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
26 opeq2 4378 . . . . . 6 ( = 𝐻 → ⟨𝐺, ⟩ = ⟨𝐺, 𝐻⟩)
2726eleq1d 2683 . . . . 5 ( = 𝐻 → (⟨𝐺, ⟩ ∈ RingOps ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps))
28 reseq1 5360 . . . . . 6 ( = 𝐻 → ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))))
2928eleq1d 2683 . . . . 5 ( = 𝐻 → (( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
3027, 29anbi12d 746 . . . 4 ( = 𝐻 → ((⟨𝐺, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
3125, 30opelopabg 4963 . . 3 ((𝐺 ∈ V ∧ 𝐻𝐴) → (⟨𝐺, 𝐻⟩ ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
3215, 31syl5bb 272 . 2 ((𝐺 ∈ V ∧ 𝐻𝐴) → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
337, 13, 32pm5.21nd 940 1 (𝐻𝐴 → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  cdif 3557  {csn 4155  cop 4161   class class class wbr 4623  {copab 4682   × cxp 5082  ran crn 5085  cres 5086  cfv 5857  GrpOpcgr 27231  GIdcgi 27232  AbelOpcablo 27286  RingOpscrngo 33364  DivRingOpscdrng 33418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865  df-ov 6618  df-1st 7128  df-2nd 7129  df-rngo 33365  df-drngo 33419
This theorem is referenced by:  zrdivrng  33423  isdrngo1  33426
  Copyright terms: Public domain W3C validator