Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvlat Structured version   Visualization version   GIF version

Theorem iscvlat 35113
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
iscvlat.b 𝐵 = (Base‘𝐾)
iscvlat.l = (le‘𝐾)
iscvlat.j = (join‘𝐾)
iscvlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
iscvlat (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝑥,𝐵   𝑥,𝑝,𝐾,𝑞
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)

Proof of Theorem iscvlat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6352 . . . 4 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 iscvlat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2syl6eqr 2812 . . 3 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6352 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
5 iscvlat.b . . . . . 6 𝐵 = (Base‘𝐾)
64, 5syl6eqr 2812 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
7 fveq2 6352 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
8 iscvlat.l . . . . . . . . . 10 = (le‘𝐾)
97, 8syl6eqr 2812 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = )
109breqd 4815 . . . . . . . 8 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑥𝑝 𝑥))
1110notbid 307 . . . . . . 7 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑥 ↔ ¬ 𝑝 𝑥))
12 eqidd 2761 . . . . . . . 8 (𝑘 = 𝐾𝑝 = 𝑝)
13 fveq2 6352 . . . . . . . . . 10 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
14 iscvlat.j . . . . . . . . . 10 = (join‘𝐾)
1513, 14syl6eqr 2812 . . . . . . . . 9 (𝑘 = 𝐾 → (join‘𝑘) = )
1615oveqd 6830 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑞) = (𝑥 𝑞))
1712, 9, 16breq123d 4818 . . . . . . 7 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞) ↔ 𝑝 (𝑥 𝑞)))
1811, 17anbi12d 749 . . . . . 6 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) ↔ (¬ 𝑝 𝑥𝑝 (𝑥 𝑞))))
19 eqidd 2761 . . . . . . 7 (𝑘 = 𝐾𝑞 = 𝑞)
2015oveqd 6830 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑝) = (𝑥 𝑝))
2119, 9, 20breq123d 4818 . . . . . 6 (𝑘 = 𝐾 → (𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝) ↔ 𝑞 (𝑥 𝑝)))
2218, 21imbi12d 333 . . . . 5 (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
236, 22raleqbidv 3291 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
243, 23raleqbidv 3291 . . 3 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
253, 24raleqbidv 3291 . 2 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
26 df-cvlat 35112 . 2 CvLat = {𝑘 ∈ AtLat ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝))}
2725, 26elrab2 3507 1 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050   class class class wbr 4804  cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  Atomscatm 35053  AtLatcal 35054  CvLatclc 35055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6816  df-cvlat 35112
This theorem is referenced by:  iscvlat2N  35114  cvlatl  35115  cvlexch1  35118  ishlat2  35143
  Copyright terms: Public domain W3C validator