Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconngr Structured version   Visualization version   GIF version

Theorem isconngr 27262
 Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isconngr (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑝,𝐺   𝑘,𝑉,𝑛
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑊(𝑓,𝑘,𝑛,𝑝)

Proof of Theorem isconngr
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-conngr 27260 . . 3 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
21eleq2i 2795 . 2 (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
3 fvex 6314 . . . . . 6 (Vtx‘𝑔) ∈ V
4 raleq 3241 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
54raleqbi1dv 3249 . . . . . 6 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
63, 5sbcie 3576 . . . . 5 ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
76abbii 2841 . . . 4 {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
87eleq2i 2795 . . 3 (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
9 fveq2 6304 . . . . . 6 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
10 isconngr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
119, 10syl6eqr 2776 . . . . 5 ( = 𝐺 → (Vtx‘) = 𝑉)
12 fveq2 6304 . . . . . . . . 9 ( = 𝐺 → (PathsOn‘) = (PathsOn‘𝐺))
1312oveqd 6782 . . . . . . . 8 ( = 𝐺 → (𝑘(PathsOn‘)𝑛) = (𝑘(PathsOn‘𝐺)𝑛))
1413breqd 4771 . . . . . . 7 ( = 𝐺 → (𝑓(𝑘(PathsOn‘)𝑛)𝑝𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
15142exbidv 1965 . . . . . 6 ( = 𝐺 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1611, 15raleqbidv 3255 . . . . 5 ( = 𝐺 → (∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1711, 16raleqbidv 3255 . . . 4 ( = 𝐺 → (∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
18 fveq2 6304 . . . . . 6 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fveq2 6304 . . . . . . . . . 10 (𝑔 = → (PathsOn‘𝑔) = (PathsOn‘))
2019oveqd 6782 . . . . . . . . 9 (𝑔 = → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘)𝑛))
2120breqd 4771 . . . . . . . 8 (𝑔 = → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝𝑓(𝑘(PathsOn‘)𝑛)𝑝))
22212exbidv 1965 . . . . . . 7 (𝑔 = → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2318, 22raleqbidv 3255 . . . . . 6 (𝑔 = → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2418, 23raleqbidv 3255 . . . . 5 (𝑔 = → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2524cbvabv 2849 . . . 4 {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = { ∣ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝}
2617, 25elab2g 3458 . . 3 (𝐺𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
278, 26syl5bb 272 . 2 (𝐺𝑊 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
282, 27syl5bb 272 1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1596  ∃wex 1817   ∈ wcel 2103  {cab 2710  ∀wral 3014  [wsbc 3541   class class class wbr 4760  ‘cfv 6001  (class class class)co 6765  Vtxcvtx 25994  PathsOncpthson 26741  ConnGraphcconngr 27259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-nul 4897 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-iota 5964  df-fv 6009  df-ov 6768  df-conngr 27260 This theorem is referenced by:  0conngr  27265  0vconngr  27266  1conngr  27267  conngrv2edg  27268
 Copyright terms: Public domain W3C validator