![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscms | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
iscms | ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6344 | . . 3 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) ∈ V) | |
2 | fveq2 6332 | . . . . . . 7 ⊢ (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀)) | |
3 | 2 | adantr 466 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀)) |
4 | id 22 | . . . . . . . 8 ⊢ (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤)) | |
5 | fveq2 6332 | . . . . . . . . 9 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀)) | |
6 | iscms.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝑀) | |
7 | 5, 6 | syl6eqr 2823 | . . . . . . . 8 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋) |
8 | 4, 7 | sylan9eqr 2827 | . . . . . . 7 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋) |
9 | 8 | sqxpeqd 5281 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋)) |
10 | 3, 9 | reseq12d 5535 | . . . . 5 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
11 | iscms.2 | . . . . 5 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
12 | 10, 11 | syl6eqr 2823 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷) |
13 | 8 | fveq2d 6336 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋)) |
14 | 12, 13 | eleq12d 2844 | . . 3 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
15 | 1, 14 | sbcied 3624 | . 2 ⊢ (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
16 | df-cms 23351 | . 2 ⊢ CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} | |
17 | 15, 16 | elrab2 3518 | 1 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 [wsbc 3587 × cxp 5247 ↾ cres 5251 ‘cfv 6031 Basecbs 16064 distcds 16158 MetSpcmt 22343 CMetcms 23271 CMetSpccms 23348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-xp 5255 df-res 5261 df-iota 5994 df-fv 6039 df-cms 23351 |
This theorem is referenced by: cmscmet 23362 cmsms 23364 cmspropd 23365 cmsss 23366 cncms 23370 |
Copyright terms: Public domain | W3C validator |