![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmp | Structured version Visualization version GIF version |
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscmp | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4303 | . . 3 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
2 | unieq 4594 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
3 | iscmp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | syl6eqr 2810 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
5 | 4 | eqeq1d 2760 | . . . 4 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
6 | 4 | eqeq1d 2760 | . . . . 5 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧)) |
7 | 6 | rexbidv 3188 | . . . 4 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
8 | 5, 7 | imbi12d 333 | . . 3 ⊢ (𝑥 = 𝐽 → ((∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
9 | 1, 8 | raleqbidv 3289 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
10 | df-cmp 21390 | . 2 ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
11 | 9, 10 | elrab2 3505 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ∃wrex 3049 ∩ cin 3712 𝒫 cpw 4300 ∪ cuni 4586 Fincfn 8119 Topctop 20898 Compccmp 21389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-in 3720 df-ss 3727 df-pw 4302 df-uni 4587 df-cmp 21390 |
This theorem is referenced by: cmpcov 21392 cncmp 21395 fincmp 21396 cmptop 21398 cmpsub 21403 tgcmp 21404 uncmp 21406 sscmp 21408 cmpfi 21411 comppfsc 21535 txcmp 21646 alexsubb 22049 alexsubALT 22054 cmpcref 30224 onsucsuccmpi 32746 limsucncmpi 32748 heibor 33931 |
Copyright terms: Public domain | W3C validator |