![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmnd | Structured version Visualization version GIF version |
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
iscmnd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
iscmnd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
iscmnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
iscmnd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
iscmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | iscmnd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
3 | 2 | 3expib 1117 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
4 | 3 | ralrimivv 3108 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
5 | iscmnd.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
6 | iscmnd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐺)) | |
7 | 6 | oveqd 6830 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐺)𝑦)) |
8 | 6 | oveqd 6830 | . . . . . . 7 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
9 | 7, 8 | eqeq12d 2775 | . . . . . 6 ⊢ (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
10 | 5, 9 | raleqbidv 3291 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
11 | 5, 10 | raleqbidv 3291 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
12 | 11 | anbi2d 742 | . . 3 ⊢ (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
13 | 1, 4, 12 | mpbi2and 994 | . 2 ⊢ (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | eqid 2760 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
15 | eqid 2760 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 14, 15 | iscmn 18400 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
17 | 13, 16 | sylibr 224 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 Mndcmnd 17495 CMndccmn 18393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 df-cmn 18395 |
This theorem is referenced by: isabld 18406 subcmn 18442 prdscmnd 18464 iscrngd 18786 psrcrng 19615 xrsmcmn 19971 2zrngacmnd 42452 |
Copyright terms: Public domain | W3C validator |