MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem2 Structured version   Visualization version   GIF version

Theorem iscmet3lem2 23290
Description: Lemma for iscmet3 23291. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
iscmet3.7 (𝜑𝐺 ∈ (Fil‘𝑋))
iscmet3.8 (𝜑𝑆:ℤ⟶𝐺)
iscmet3.5 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
iscmet3lem2 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐺   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐺(𝑣,𝑢,𝑛)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem2
Dummy variables 𝑗 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.5 . . 3 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
2 eldmg 5474 . . . 4 (𝐹 ∈ dom (⇝𝑡𝐽) → (𝐹 ∈ dom (⇝𝑡𝐽) ↔ ∃𝑥 𝐹(⇝𝑡𝐽)𝑥))
32ibi 256 . . 3 (𝐹 ∈ dom (⇝𝑡𝐽) → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
41, 3syl 17 . 2 (𝜑 → ∃𝑥 𝐹(⇝𝑡𝐽)𝑥)
5 iscmet3.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
6 metxmet 22340 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
75, 6syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
8 iscmet3.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
98mopntopon 22445 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
107, 9syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
11 lmcl 21303 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
1210, 11sylan 489 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
137adantr 472 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐷 ∈ (∞Met‘𝑋))
148mopni2 22499 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
15143expia 1115 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
1613, 15sylan 489 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦 → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦))
17 iscmet3.7 . . . . . . . . 9 (𝜑𝐺 ∈ (Fil‘𝑋))
1817ad3antrrr 768 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝐺 ∈ (Fil‘𝑋))
19 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2019ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
21 rphalfcl 12051 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2221adantl 473 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
23 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2423iscmet3lem3 23288 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑟 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2520, 22, 24syl2anc 696 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2))
2613adantr 472 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
2712adantr 472 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥𝑋)
28 blcntr 22419 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
2926, 27, 22, 28syl3anc 1477 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
30 simplr 809 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹(⇝𝑡𝐽)𝑥)
3122rpxrd 12066 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ*)
328blopn 22506 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3326, 27, 31, 32syl3anc 1477 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)(𝑟 / 2)) ∈ 𝐽)
3423, 29, 20, 30, 33lmcvg 21268 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)))
3523rexanuz2 14288 . . . . . . . . . . 11 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3623r19.2uz 14290 . . . . . . . . . . . 12 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))
3717ad3antrrr 768 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝐺 ∈ (Fil‘𝑋))
38 iscmet3.8 . . . . . . . . . . . . . . . 16 (𝜑𝑆:ℤ⟶𝐺)
3938ad3antrrr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑆:ℤ⟶𝐺)
40 eluzelz 11889 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
4140, 23eleq2s 2857 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
4241ad2antrl 766 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → 𝑘 ∈ ℤ)
43 ffvelrn 6520 . . . . . . . . . . . . . . 15 ((𝑆:ℤ⟶𝐺𝑘 ∈ ℤ) → (𝑆𝑘) ∈ 𝐺)
4439, 42, 43syl2anc 696 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ∈ 𝐺)
45 rpxr 12033 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4645adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
47 blssm 22424 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4826, 27, 46, 47syl3anc 1477 . . . . . . . . . . . . . . 15 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
4948adantr 472 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋)
5041adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
51 1rp 12029 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
52 rphalfcl 12051 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ+
54 rpexpcl 13073 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5553, 54mpan 708 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
5650, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
5756rpred 12065 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ)
5822adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ+)
5958rpred 12065 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ)
60 ltle 10318 . . . . . . . . . . . . . . . . . . 19 ((((1 / 2)↑𝑘) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
6157, 59, 60syl2anc 696 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → ((1 / 2)↑𝑘) ≤ (𝑟 / 2)))
62 simpll 807 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝜑)
63 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
6463eleq2d 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
65 iscmet3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
6665r19.21bi 3070 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
67 eluzfz2 12542 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
6867, 23eleq2s 2857 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝑍𝑘 ∈ (𝑀...𝑘))
6968adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝑘 ∈ (𝑀...𝑘))
7064, 66, 69rspcdva 3455 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (𝑆𝑘))
7170adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ (𝑆𝑘))
72 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ (𝑆𝑘))
73 iscmet3.9 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7473ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
7541ad2antlr 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑘 ∈ ℤ)
76 rsp 3067 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
7774, 75, 76sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
78 oveq1 6820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
7978breq1d 4814 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
80 oveq2 6821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑦 → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷𝑦))
8180breq1d 4814 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑦 → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
8279, 81rspc2va 3462 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ 𝑦 ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
8371, 72, 77, 82syl21anc 1476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘))
847ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝐷 ∈ (∞Met‘𝑋))
8541, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ+)
8685rpxrd 12066 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘𝑍 → ((1 / 2)↑𝑘) ∈ ℝ*)
8786ad2antlr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → ((1 / 2)↑𝑘) ∈ ℝ*)
88 iscmet3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝑍𝑋)
8988ffvelrnda 6522 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
9089adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝐹𝑘) ∈ 𝑋)
9117adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → 𝐺 ∈ (Fil‘𝑋))
9238, 41, 43syl2an 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝑍) → (𝑆𝑘) ∈ 𝐺)
93 filelss 21857 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑆𝑘) ∈ 𝐺) → (𝑆𝑘) ⊆ 𝑋)
9491, 92, 93syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ 𝑋)
9594sselda 3744 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦𝑋)
96 elbl2 22396 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((1 / 2)↑𝑘) ∈ ℝ*) ∧ ((𝐹𝑘) ∈ 𝑋𝑦𝑋)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9784, 87, 90, 95, 96syl22anc 1478 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → (𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ↔ ((𝐹𝑘)𝐷𝑦) < ((1 / 2)↑𝑘)))
9883, 97mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝑍) ∧ 𝑦 ∈ (𝑆𝑘)) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
9998ex 449 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑦 ∈ (𝑆𝑘) → 𝑦 ∈ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘))))
10099ssrdv 3750 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10162, 100sylan 489 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)))
10226adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐷 ∈ (∞Met‘𝑋))
10388ad2antrr 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
104103ffvelrnda 6522 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
10556rpxrd 12066 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ*)
10631adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑟 / 2) ∈ ℝ*)
107 ssbl 22429 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ ((1 / 2)↑𝑘) ≤ (𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
1081073expia 1115 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (((1 / 2)↑𝑘) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*)) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
109102, 104, 105, 106, 108syl22anc 1478 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
110 sstr 3752 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ∧ ((𝐹𝑘)(ball‘𝐷)((1 / 2)↑𝑘)) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
111101, 109, 110syl6an 569 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) ≤ (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
11261, 111syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < (𝑟 / 2) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
113112adantrd 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
114113impr 650 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))
11527adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥𝑋)
116 blcom 22400 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑟 / 2) ∈ ℝ*) ∧ (𝑥𝑋 ∧ (𝐹𝑘) ∈ 𝑋)) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
117102, 106, 115, 104, 116syl22anc 1478 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) ↔ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2))))
118 rpre 12032 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
119118ad2antlr 765 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑟 ∈ ℝ)
120 blhalf 22411 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
121120expr 644 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
122102, 104, 119, 121syl21anc 1476 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (𝑥 ∈ ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
123117, 122sylbid 230 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2)) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
124123adantld 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → ((((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟)))
125124impr 650 . . . . . . . . . . . . . . 15 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → ((𝐹𝑘)(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑥(ball‘𝐷)𝑟))
126114, 125sstrd 3754 . . . . . . . . . . . . . 14 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))
127 filss 21858 . . . . . . . . . . . . . 14 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑆𝑘) ∈ 𝐺 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑋 ∧ (𝑆𝑘) ⊆ (𝑥(ball‘𝐷)𝑟))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
12837, 44, 49, 126, 127syl13anc 1479 . . . . . . . . . . . . 13 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
129128rexlimdvaa 3170 . . . . . . . . . . . 12 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑘𝑍 (((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13036, 129syl5 34 . . . . . . . . . . 11 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(((1 / 2)↑𝑘) < (𝑟 / 2) ∧ (𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13135, 130syl5bir 233 . . . . . . . . . 10 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < (𝑟 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑥(ball‘𝐷)(𝑟 / 2))) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺))
13225, 34, 131mp2and 717 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
133132ad2ant2r 800 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ∈ 𝐺)
13410adantr 472 . . . . . . . . . 10 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝐽 ∈ (TopOn‘𝑋))
135 toponss 20933 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
136134, 135sylan 489 . . . . . . . . 9 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → 𝑦𝑋)
137136adantr 472 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝑋)
138 simprr 813 . . . . . . . 8 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)
139 filss 21858 . . . . . . . 8 ((𝐺 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑟) ∈ 𝐺𝑦𝑋 ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
14018, 133, 137, 138, 139syl13anc 1479 . . . . . . 7 ((((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦)) → 𝑦𝐺)
141140rexlimdvaa 3170 . . . . . 6 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑦𝑦𝐺))
14216, 141syld 47 . . . . 5 (((𝜑𝐹(⇝𝑡𝐽)𝑥) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐺))
143142ralrimiva 3104 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))
144 flimopn 21980 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14510, 17, 144syl2anc 696 . . . . 5 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
146145adantr 472 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝑥 ∈ (𝐽 fLim 𝐺) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐺))))
14712, 143, 146mpbir2and 995 . . 3 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → 𝑥 ∈ (𝐽 fLim 𝐺))
148 ne0i 4064 . . 3 (𝑥 ∈ (𝐽 fLim 𝐺) → (𝐽 fLim 𝐺) ≠ ∅)
149147, 148syl 17 . 2 ((𝜑𝐹(⇝𝑡𝐽)𝑥) → (𝐽 fLim 𝐺) ≠ ∅)
1504, 149exlimddv 2012 1 (𝜑 → (𝐽 fLim 𝐺) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058   class class class wbr 4804  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6813  cr 10127  1c1 10129  *cxr 10265   < clt 10266  cle 10267   / cdiv 10876  2c2 11262  cz 11569  cuz 11879  +crp 12025  ...cfz 12519  cexp 13054  ∞Metcxmt 19933  Metcme 19934  ballcbl 19935  MetOpencmopn 19938  TopOnctopon 20917  𝑡clm 21232  Filcfil 21850   fLim cflim 21939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-fz 12520  df-fl 12787  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419  df-topgen 16306  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-top 20901  df-topon 20918  df-bases 20952  df-ntr 21026  df-nei 21104  df-lm 21235  df-fil 21851  df-flim 21944
This theorem is referenced by:  iscmet3  23291
  Copyright terms: Public domain W3C validator