MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet Structured version   Visualization version   GIF version

Theorem iscmet 23128
Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
iscmet.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
iscmet (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐽   𝑓,𝑋

Proof of Theorem iscmet
Dummy variables 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6259 . 2 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ V)
2 elfvex 6259 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) → 𝑋 ∈ V)
4 fveq2 6229 . . . . . 6 (𝑥 = 𝑋 → (Met‘𝑥) = (Met‘𝑋))
5 rabeq 3223 . . . . . 6 ((Met‘𝑥) = (Met‘𝑋) → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
64, 5syl 17 . . . . 5 (𝑥 = 𝑋 → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
7 df-cmet 23101 . . . . 5 CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
8 fvex 6239 . . . . . 6 (Met‘𝑋) ∈ V
98rabex 4845 . . . . 5 {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ∈ V
106, 7, 9fvmpt 6321 . . . 4 (𝑋 ∈ V → (CMet‘𝑋) = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
1110eleq2d 2716 . . 3 (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}))
12 fveq2 6229 . . . . 5 (𝑑 = 𝐷 → (CauFil‘𝑑) = (CauFil‘𝐷))
13 fveq2 6229 . . . . . . . 8 (𝑑 = 𝐷 → (MetOpen‘𝑑) = (MetOpen‘𝐷))
14 iscmet.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
1513, 14syl6eqr 2703 . . . . . . 7 (𝑑 = 𝐷 → (MetOpen‘𝑑) = 𝐽)
1615oveq1d 6705 . . . . . 6 (𝑑 = 𝐷 → ((MetOpen‘𝑑) fLim 𝑓) = (𝐽 fLim 𝑓))
1716neeq1d 2882 . . . . 5 (𝑑 = 𝐷 → (((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅))
1812, 17raleqbidv 3182 . . . 4 (𝑑 = 𝐷 → (∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
1918elrab 3396 . . 3 (𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
2011, 19syl6bb 276 . 2 (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)))
211, 3, 20pm5.21nii 367 1 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  Vcvv 3231  c0 3948  cfv 5926  (class class class)co 6690  Metcme 19780  MetOpencmopn 19784   fLim cflim 21785  CauFilccfil 23096  CMetcms 23098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-cmet 23101
This theorem is referenced by:  cmetcvg  23129  cmetmet  23130  iscmet3  23137  cmetss  23159  equivcmet  23160  relcmpcmet  23161  cmetcusp1  23195
  Copyright terms: Public domain W3C validator