MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclmp Structured version   Visualization version   GIF version

Theorem isclmp 23116
Description: The predicate "is a subcomplex module." (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
Hypotheses
Ref Expression
isclmp.t · = ( ·𝑠𝑊)
isclmp.a + = (+g𝑊)
isclmp.v 𝑉 = (Base‘𝑊)
isclmp.s 𝑆 = (Scalar‘𝑊)
isclmp.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
isclmp (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥,𝑊,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, · ,𝑦,𝑧

Proof of Theorem isclmp
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 isclmp.s . . 3 𝑆 = (Scalar‘𝑊)
2 isclmp.k . . 3 𝐾 = (Base‘𝑆)
31, 2isclm 23083 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
4 isclmp.v . . . . 5 𝑉 = (Base‘𝑊)
5 isclmp.a . . . . 5 + = (+g𝑊)
6 isclmp.t . . . . 5 · = ( ·𝑠𝑊)
7 eqid 2771 . . . . 5 (+g𝑆) = (+g𝑆)
8 eqid 2771 . . . . 5 (.r𝑆) = (.r𝑆)
9 eqid 2771 . . . . 5 (1r𝑆) = (1r𝑆)
104, 5, 6, 1, 2, 7, 8, 9islmod 19077 . . . 4 (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
11103anbi1i 1160 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
12 3anass 1080 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
13 df-3an 1073 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
1413anbi1i 610 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
1512, 14bitri 264 . . 3 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
16 an32 625 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
1711, 15, 163bitri 286 . 2 ((𝑊 ∈ LMod ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
18 an32 625 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ 𝑆 ∈ Ring))
19 3anass 1080 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
2019bicomi 214 . . . . . 6 ((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ (𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
2120anbi1i 610 . . . . 5 (((𝑊 ∈ Grp ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ 𝑆 ∈ Ring) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring))
2218, 21bitri 264 . . . 4 (((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring))
2322anbi1i 610 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))))
24 anass 459 . . 3 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ 𝑆 ∈ Ring) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))))
25 df-3an 1073 . . . . . . . . . . 11 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
26 ancom 452 . . . . . . . . . . 11 ((((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
2725, 26anbi12i 612 . . . . . . . . . 10 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
28 an4 635 . . . . . . . . . 10 (((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((1r𝑆) · 𝑥) = 𝑥 ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
29 an32 625 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
30 ancom 452 . . . . . . . . . . . . 13 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ (((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉))
3130anbi1i 610 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
3229, 31bitri 264 . . . . . . . . . . 11 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ↔ ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
3332anbi1i 610 . . . . . . . . . 10 (((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ ((1r𝑆) · 𝑥) = 𝑥) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
3427, 28, 333bitri 286 . . . . . . . . 9 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
35 fveq2 6332 . . . . . . . . . . . . . . . . . 18 (𝑆 = (ℂflds 𝐾) → (1r𝑆) = (1r‘(ℂflds 𝐾)))
36 eqid 2771 . . . . . . . . . . . . . . . . . . . 20 (ℂflds 𝐾) = (ℂflds 𝐾)
37 eqid 2771 . . . . . . . . . . . . . . . . . . . 20 (1r‘ℂfld) = (1r‘ℂfld)
3836, 37subrg1 19000 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘ℂfld) = (1r‘(ℂflds 𝐾)))
3938eqcomd 2777 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘(ℂflds 𝐾)) = (1r‘ℂfld))
4035, 39sylan9eq 2825 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (1r𝑆) = (1r‘ℂfld))
41 cnfld1 19986 . . . . . . . . . . . . . . . . 17 1 = (1r‘ℂfld)
4240, 41syl6eqr 2823 . . . . . . . . . . . . . . . 16 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (1r𝑆) = 1)
4342oveq1d 6808 . . . . . . . . . . . . . . 15 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → ((1r𝑆) · 𝑥) = (1 · 𝑥))
4443eqeq1d 2773 . . . . . . . . . . . . . 14 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
45443adant1 1124 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
4645ad2antrr 705 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((1r𝑆) · 𝑥) = 𝑥 ↔ (1 · 𝑥) = 𝑥))
4746anbi1d 615 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ↔ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)))
4847anbi1d 615 . . . . . . . . . 10 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
49 eqid 2771 . . . . . . . . . . . . . . . . . . 19 (+g‘ℂfld) = (+g‘ℂfld)
5036, 49ressplusg 16201 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (SubRing‘ℂfld) → (+g‘ℂfld) = (+g‘(ℂflds 𝐾)))
5150adantl 467 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g‘ℂfld) = (+g‘(ℂflds 𝐾)))
52 cnfldadd 19966 . . . . . . . . . . . . . . . . . 18 + = (+g‘ℂfld)
5352a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → + = (+g‘ℂfld))
54 fveq2 6332 . . . . . . . . . . . . . . . . . 18 (𝑆 = (ℂflds 𝐾) → (+g𝑆) = (+g‘(ℂflds 𝐾)))
5554adantr 466 . . . . . . . . . . . . . . . . 17 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = (+g‘(ℂflds 𝐾)))
5651, 53, 553eqtr4rd 2816 . . . . . . . . . . . . . . . 16 ((𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = + )
57563adant1 1124 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (+g𝑆) = + )
5857oveqd 6810 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑟(+g𝑆)𝑦) = (𝑟 + 𝑦))
5958ad2antrr 705 . . . . . . . . . . . . 13 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (𝑟(+g𝑆)𝑦) = (𝑟 + 𝑦))
6059oveq1d 6808 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 + 𝑦) · 𝑥))
6160eqeq1d 2773 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ↔ ((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
62 eqid 2771 . . . . . . . . . . . . . . . . . 18 (.r‘ℂfld) = (.r‘ℂfld)
6336, 62ressmulr 16214 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → (.r‘ℂfld) = (.r‘(ℂflds 𝐾)))
64633ad2ant3 1129 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r‘ℂfld) = (.r‘(ℂflds 𝐾)))
65 cnfldmul 19967 . . . . . . . . . . . . . . . . 17 · = (.r‘ℂfld)
6665a1i 11 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → · = (.r‘ℂfld))
67 fveq2 6332 . . . . . . . . . . . . . . . . 17 (𝑆 = (ℂflds 𝐾) → (.r𝑆) = (.r‘(ℂflds 𝐾)))
68673ad2ant2 1128 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r𝑆) = (.r‘(ℂflds 𝐾)))
6964, 66, 683eqtr4rd 2816 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (.r𝑆) = · )
7069oveqd 6810 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑟(.r𝑆)𝑦) = (𝑟 · 𝑦))
7170ad2antrr 705 . . . . . . . . . . . . 13 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (𝑟(.r𝑆)𝑦) = (𝑟 · 𝑦))
7271oveq1d 6808 . . . . . . . . . . . 12 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((𝑟(.r𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑦) · 𝑥))
7372eqeq1d 2773 . . . . . . . . . . 11 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ↔ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
7461, 73anbi12d 616 . . . . . . . . . 10 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))) ↔ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
7548, 74anbi12d 616 . . . . . . . . 9 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((((1r𝑆) · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
7634, 75syl5bb 272 . . . . . . . 8 ((((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) ∧ (𝑧𝑉𝑥𝑉)) → ((((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
77762ralbidva 3137 . . . . . . 7 (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑟𝐾𝑦𝐾)) → (∀𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
78772ralbidva 3137 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
79 ralcom 3246 . . . . . . . . . . 11 (∀𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8079ralbii 3129 . . . . . . . . . 10 (∀𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
81 ralcom 3246 . . . . . . . . . 10 (∀𝑦𝐾𝑥𝑉𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8280, 81bitri 264 . . . . . . . . 9 (∀𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8382ralbii 3129 . . . . . . . 8 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑟𝐾𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
84 ralcom 3246 . . . . . . . 8 (∀𝑟𝐾𝑥𝑉𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8583, 84bitri 264 . . . . . . 7 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
86 ralcom 3246 . . . . . . . 8 (∀𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
8786ralbii 3129 . . . . . . 7 (∀𝑥𝑉𝑟𝐾𝑦𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
88 ralcom 3246 . . . . . . . 8 (∀𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
89882ralbii 3130 . . . . . . 7 (∀𝑥𝑉𝑦𝐾𝑟𝐾𝑧𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
9085, 87, 893bitri 286 . . . . . 6 (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
9178, 90syl6bb 276 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ ∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
9236subrgring 18993 . . . . . . . 8 (𝐾 ∈ (SubRing‘ℂfld) → (ℂflds 𝐾) ∈ Ring)
93923ad2ant3 1129 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ Ring)
94 eleq1 2838 . . . . . . . 8 (𝑆 = (ℂflds 𝐾) → (𝑆 ∈ Ring ↔ (ℂflds 𝐾) ∈ Ring))
95943ad2ant2 1128 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (𝑆 ∈ Ring ↔ (ℂflds 𝐾) ∈ Ring))
9693, 95mpbird 247 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑆 ∈ Ring)
9796biantrurd 522 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)) ↔ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))))
984grpbn0 17659 . . . . . . . 8 (𝑊 ∈ Grp → 𝑉 ≠ ∅)
99983ad2ant1 1127 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑉 ≠ ∅)
10037subrg1cl 18998 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → (1r‘ℂfld) ∈ 𝐾)
101 ne0i 4069 . . . . . . . . 9 ((1r‘ℂfld) ∈ 𝐾𝐾 ≠ ∅)
102100, 101syl 17 . . . . . . . 8 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ≠ ∅)
1031023ad2ant3 1129 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ≠ ∅)
104 ancom 452 . . . . . . . . . . . . . . . . 17 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)))
105104anbi1i 610 . . . . . . . . . . . . . . . 16 (((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
106105a1i 11 . . . . . . . . . . . . . . 15 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
107106ralbidv 3135 . . . . . . . . . . . . . 14 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
108 r19.28zv 4207 . . . . . . . . . . . . . . 15 (𝐾 ≠ ∅ → (∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
109108adantl 467 . . . . . . . . . . . . . 14 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
110107, 109bitrd 268 . . . . . . . . . . . . 13 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
111 anass 459 . . . . . . . . . . . . . 14 ((((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
112 anass 459 . . . . . . . . . . . . . . 15 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))))
113112anbi2i 609 . . . . . . . . . . . . . 14 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ (((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ↔ ((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))))
114 ancom 452 . . . . . . . . . . . . . 14 (((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
115111, 113, 1143bitri 286 . . . . . . . . . . . . 13 ((((𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
116110, 115syl6bb 276 . . . . . . . . . . . 12 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
117116ralbidv 3135 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
118 r19.28zv 4207 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
119118adantr 466 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉 (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
120117, 119bitrd 268 . . . . . . . . . 10 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
121 anass 459 . . . . . . . . . . 11 ((((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((1 · 𝑥) = 𝑥 ∧ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))))
122 oveq1 6800 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 + 𝑦) = (𝑟 + 𝑦))
123122oveq1d 6808 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 + 𝑦) · 𝑥) = ((𝑟 + 𝑦) · 𝑥))
124 oveq1 6800 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 · 𝑥) = (𝑟 · 𝑥))
125124oveq1d 6808 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 · 𝑥) + (𝑦 · 𝑥)) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)))
126123, 125eqeq12d 2786 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑟 → (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ↔ ((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))))
127 oveq1 6800 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑟 → (𝑧 · 𝑦) = (𝑟 · 𝑦))
128127oveq1d 6808 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → ((𝑧 · 𝑦) · 𝑥) = ((𝑟 · 𝑦) · 𝑥))
129 oveq1 6800 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑟 → (𝑧 · (𝑦 · 𝑥)) = (𝑟 · (𝑦 · 𝑥)))
130128, 129eqeq12d 2786 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑟 → (((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)) ↔ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
131126, 130anbi12d 616 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑟 → ((((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ↔ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
132131cbvralv 3320 . . . . . . . . . . . . . . 15 (∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ↔ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))
1331323anbi3i 1162 . . . . . . . . . . . . . 14 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) ↔ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))))
134 3anan32 1082 . . . . . . . . . . . . . 14 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
135133, 134bitri 264 . . . . . . . . . . . . 13 (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))) ↔ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))))
136135bicomi 214 . . . . . . . . . . . 12 ((((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))
137136anbi2i 609 . . . . . . . . . . 11 (((1 · 𝑥) = 𝑥 ∧ (((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
138121, 137bitri 264 . . . . . . . . . 10 ((((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑟𝐾 (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥))))) ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))
139120, 138syl6bb 276 . . . . . . . . 9 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
140139ralbidv 3135 . . . . . . . 8 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
141 r19.28zv 4207 . . . . . . . . 9 (𝐾 ≠ ∅ → (∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
142141adantl 467 . . . . . . . 8 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾 ((1 · 𝑥) = 𝑥 ∧ ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
143140, 142bitrd 268 . . . . . . 7 ((𝑉 ≠ ∅ ∧ 𝐾 ≠ ∅) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14499, 103, 143syl2anc 573 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
145144ralbidv 3135 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (∀𝑥𝑉𝑦𝐾𝑧𝑉𝑟𝐾 ((((1 · 𝑥) = 𝑥 ∧ (𝑦 · 𝑥) ∈ 𝑉) ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) ∧ (((𝑟 + 𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑟 · 𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)))) ↔ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14691, 97, 1453bitr3d 298 . . . 4 ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → ((𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
147146pm5.32i 564 . . 3 (((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ (𝑆 ∈ Ring ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥)))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
14823, 24, 1473bitri 286 . 2 ((((𝑊 ∈ Grp ∧ 𝑆 ∈ Ring) ∧ (𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) ∧ ∀𝑟𝐾𝑦𝐾𝑧𝑉𝑥𝑉 (((𝑦 · 𝑥) ∈ 𝑉 ∧ (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ((𝑟(+g𝑆)𝑦) · 𝑥) = ((𝑟 · 𝑥) + (𝑦 · 𝑥))) ∧ (((𝑟(.r𝑆)𝑦) · 𝑥) = (𝑟 · (𝑦 · 𝑥)) ∧ ((1r𝑆) · 𝑥) = 𝑥))) ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
1493, 17, 1483bitri 286 1 (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  c0 4063  cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141   · cmul 10143  Basecbs 16064  s cress 16065  +gcplusg 16149  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153  Grpcgrp 17630  1rcur 18709  Ringcrg 18755  SubRingcsubrg 18986  LModclmod 19073  fldccnfld 19961  ℂModcclm 23081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-subg 17799  df-cmn 18402  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-subrg 18988  df-lmod 19075  df-cnfld 19962  df-clm 23082
This theorem is referenced by:  isclmi0  23117  iscvsp  23147
  Copyright terms: Public domain W3C validator