Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscllaw Structured version   Visualization version   GIF version

Theorem iscllaw 42335
Description: The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
iscllaw (( 𝑉𝑀𝑊) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem iscllaw
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . 3 ((𝑜 = 𝑚 = 𝑀) → 𝑚 = 𝑀)
2 oveq 6819 . . . . . 6 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
32adantr 472 . . . . 5 ((𝑜 = 𝑚 = 𝑀) → (𝑥𝑜𝑦) = (𝑥 𝑦))
43, 1eleq12d 2833 . . . 4 ((𝑜 = 𝑚 = 𝑀) → ((𝑥𝑜𝑦) ∈ 𝑚 ↔ (𝑥 𝑦) ∈ 𝑀))
51, 4raleqbidv 3291 . . 3 ((𝑜 = 𝑚 = 𝑀) → (∀𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
61, 5raleqbidv 3291 . 2 ((𝑜 = 𝑚 = 𝑀) → (∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
7 df-cllaw 42332 . 2 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
86, 7brabga 5139 1 (( 𝑉𝑀𝑊) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050   class class class wbr 4804  (class class class)co 6813   clLaw ccllaw 42329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-iota 6012  df-fv 6057  df-ov 6816  df-cllaw 42332
This theorem is referenced by:  clcllaw  42337  mgmplusgiopALT  42340  clintopcllaw  42357  mgm2mgm  42373
  Copyright terms: Public domain W3C validator