![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscld | Structured version Visualization version GIF version |
Description: The predicate "𝑆 is a closed set." (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscld | ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldval 20875 | . . . 4 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
3 | 2 | eleq2d 2716 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽})) |
4 | difeq2 3755 | . . . . 5 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
5 | 4 | eleq1d 2715 | . . . 4 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
6 | 5 | elrab 3396 | . . 3 ⊢ (𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
7 | 3, 6 | syl6bb 276 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
8 | 1 | topopn 20759 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | elpw2g 4857 | . . . 4 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
11 | 10 | anbi1d 741 | . 2 ⊢ (𝐽 ∈ Top → ((𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
12 | 7, 11 | bitrd 268 | 1 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ∖ cdif 3604 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 ‘cfv 5926 Topctop 20746 Clsdccld 20868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-top 20747 df-cld 20871 |
This theorem is referenced by: iscld2 20880 cldss 20881 cldopn 20883 topcld 20887 discld 20941 indiscld 20943 restcld 21024 ordtcld1 21049 ordtcld2 21050 hauscmp 21258 txcld 21454 ptcld 21464 qtopcld 21564 opnsubg 21958 sszcld 22667 stoweidlem57 40592 |
Copyright terms: Public domain | W3C validator |