![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > isch | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6820 | . . . 4 ⊢ (ℎ = 𝐻 → (ℎ ↑𝑚 ℕ) = (𝐻 ↑𝑚 ℕ)) | |
2 | 1 | imaeq2d 5624 | . . 3 ⊢ (ℎ = 𝐻 → ( ⇝𝑣 “ (ℎ ↑𝑚 ℕ)) = ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ))) |
3 | id 22 | . . 3 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
4 | 2, 3 | sseq12d 3775 | . 2 ⊢ (ℎ = 𝐻 → (( ⇝𝑣 “ (ℎ ↑𝑚 ℕ)) ⊆ ℎ ↔ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻)) |
5 | df-ch 28387 | . 2 ⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑𝑚 ℕ)) ⊆ ℎ} | |
6 | 4, 5 | elrab2 3507 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 “ cima 5269 (class class class)co 6813 ↑𝑚 cmap 8023 ℕcn 11212 ⇝𝑣 chli 28093 Sℋ csh 28094 Cℋ cch 28095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fv 6057 df-ov 6816 df-ch 28387 |
This theorem is referenced by: isch2 28389 chsh 28390 |
Copyright terms: Public domain | W3C validator |