MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau3 Structured version   Visualization version   GIF version

Theorem iscau3 23070
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
iscau3 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐷   𝑗,𝐹,𝑘,𝑚,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑚,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝑀(𝑥,𝑘,𝑚)   𝑍(𝑚)

Proof of Theorem iscau3
StepHypRef Expression
1 iscau3.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 iscau2 23069 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
31, 2syl 17 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
41adantr 481 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝐷 ∈ (∞Met‘𝑋))
5 ssid 3622 . . . . . . 7 ℤ ⊆ ℤ
6 simpr 477 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑘) ∈ 𝑋)
7 eleq1 2688 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
8 eleq1 2688 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑚) ∈ 𝑋))
9 xmetsym 22146 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
109fveq2d 6193 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ( I ‘((𝐹𝑗)𝐷(𝐹𝑘))) = ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))))
11 xmetsym 22146 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
1211fveq2d 6193 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ( I ‘((𝐹𝑚)𝐷(𝐹𝑗))) = ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))))
13 simp1 1060 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
14 simp2l 1086 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑘) ∈ 𝑋)
15 simp3l 1088 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑗) ∈ 𝑋)
16 xmetcl 22130 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
1713, 14, 15, 16syl3anc 1325 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
18 simp2r 1087 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑚) ∈ 𝑋)
19 xmetcl 22130 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
2013, 15, 18, 19syl3anc 1325 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
21 simp3r 1089 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
2221rehalfcld 11276 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ)
2322rexrd 10086 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ*)
24 xlt2add 12087 . . . . . . . . . 10 (((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ* ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*) ∧ ((𝑥 / 2) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ*)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2517, 20, 23, 23, 24syl22anc 1326 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
26 rexadd 12060 . . . . . . . . . . . . 13 (((𝑥 / 2) ∈ ℝ ∧ (𝑥 / 2) ∈ ℝ) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2)))
2722, 22, 26syl2anc 693 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2)))
2821recnd 10065 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℂ)
29282halvesd 11275 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
3027, 29eqtrd 2655 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = 𝑥)
3130breq2d 4663 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
32 xmettri 22150 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
3313, 14, 18, 15, 32syl13anc 1327 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
34 xmetcl 22130 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3513, 14, 18, 34syl3anc 1325 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3617, 20xaddcld 12128 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*)
3721rexrd 10086 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ*)
38 xrlelttr 11984 . . . . . . . . . . . 12 ((((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ* ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*𝑥 ∈ ℝ*) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3935, 36, 37, 38syl3anc 1325 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4033, 39mpand 711 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4131, 40sylbid 230 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4225, 41syld 47 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
43 ovex 6675 . . . . . . . . . . 11 ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V
44 fvi 6253 . . . . . . . . . . 11 (((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4543, 44ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗))
4645breq1i 4658 . . . . . . . . 9 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2))
47 ovex 6675 . . . . . . . . . . 11 ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V
48 fvi 6253 . . . . . . . . . . 11 (((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚)))
4947, 48ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚))
5049breq1i 4658 . . . . . . . . 9 (( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2) ↔ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2))
5146, 50anbi12i 733 . . . . . . . 8 ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)))
52 ovex 6675 . . . . . . . . . 10 ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V
53 fvi 6253 . . . . . . . . . 10 (((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5452, 53ax-mp 5 . . . . . . . . 9 ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚))
5554breq1i 4658 . . . . . . . 8 (( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
5642, 51, 553imtr4g 285 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
575, 6, 7, 8, 10, 12, 56cau3lem 14088 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
584, 57syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5945breq1i 4658 . . . . . . . . . 10 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)
6059anbi2i 730 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
61 df-3an 1039 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6260, 61bitr4i 267 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6362ralbii 2979 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6463rexbii 3039 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6564ralbii 2979 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6655ralbii 2979 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
6766anbi2i 730 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
68 df-3an 1039 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6967, 68bitr4i 267 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7069ralbii 2979 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170rexbii 3039 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7271ralbii 2979 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7358, 65, 723bitr3g 302 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
74 iscau3.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
7574adantr 481 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝑀 ∈ ℤ)
76 iscau3.2 . . . . . . 7 𝑍 = (ℤ𝑀)
7776rexuz3 14082 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7875, 77syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7978ralbidv 2985 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
8073, 79bitr4d 271 . . 3 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
8180pm5.32da 673 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
823, 81bitrd 268 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wcel 1989  wral 2911  wrex 2912  Vcvv 3198   class class class wbr 4651   I cid 5021  dom cdm 5112  cfv 5886  (class class class)co 6647  pm cpm 7855  cc 9931  cr 9932   + caddc 9936  *cxr 10070   < clt 10071  cle 10072   / cdiv 10681  2c2 11067  cz 11374  cuz 11684  +crp 11829   +𝑒 cxad 11941  ∞Metcxmt 19725  Caucca 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-1st 7165  df-2nd 7166  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-2 11076  df-z 11375  df-uz 11685  df-rp 11830  df-xneg 11943  df-xadd 11944  df-psmet 19732  df-xmet 19733  df-bl 19735  df-cau 23048
This theorem is referenced by:  iscau4  23071  caucfil  23075  cmetcaulem  23080  heibor1lem  33588
  Copyright terms: Public domain W3C validator