Step | Hyp | Ref
| Expression |
1 | | bndmet 33710 |
. . 3
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) |
2 | | 0re 10078 |
. . . . . 6
⊢ 0 ∈
ℝ |
3 | 2 | ne0ii 3956 |
. . . . 5
⊢ ℝ
≠ ∅ |
4 | | metf 22182 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
5 | | ffn 6083 |
. . . . . . . . . 10
⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋)) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋)) |
7 | 1, 6 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋)) |
8 | 7 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋)) |
9 | 1, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
10 | | fdm 6089 |
. . . . . . . . . . . 12
⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ → dom 𝑀 = (𝑋 × 𝑋)) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋)) |
12 | | xpeq2 5163 |
. . . . . . . . . . . 12
⊢ (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅)) |
13 | | xp0 5587 |
. . . . . . . . . . . 12
⊢ (𝑋 × ∅) =
∅ |
14 | 12, 13 | syl6eq 2701 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ → (𝑋 × 𝑋) = ∅) |
15 | 11, 14 | sylan9eq 2705 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅) |
16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅) |
17 | | dm0rn0 5374 |
. . . . . . . . 9
⊢ (dom
𝑀 = ∅ ↔ ran
𝑀 =
∅) |
18 | 16, 17 | sylib 208 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅) |
19 | | 0ss 4005 |
. . . . . . . 8
⊢ ∅
⊆ (0[,]𝑥) |
20 | 18, 19 | syl6eqss 3688 |
. . . . . . 7
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥)) |
21 | | df-f 5930 |
. . . . . . 7
⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥))) |
22 | 8, 20, 21 | sylanbrc 699 |
. . . . . 6
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
23 | 22 | ralrimiva 2995 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
24 | | r19.2z 4093 |
. . . . 5
⊢ ((ℝ
≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
25 | 3, 23, 24 | sylancr 696 |
. . . 4
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
26 | | isbnd2 33712 |
. . . . . 6
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))) |
27 | 26 | simprbi 479 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
28 | | 2re 11128 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
29 | | simprlr 820 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+) |
30 | 29 | rpred 11910 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ) |
31 | | remulcl 10059 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝑟
∈ ℝ) → (2 · 𝑟) ∈ ℝ) |
32 | 28, 30, 31 | sylancr 696 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ) |
33 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋)) |
34 | | simpll 805 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑀 ∈ (Met‘𝑋)) |
35 | | simprl 809 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
36 | | simprr 811 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
37 | | metcl 22184 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝑀𝑧) ∈ ℝ) |
38 | 34, 35, 36, 37 | syl3anc 1366 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ∈ ℝ) |
39 | | metge0 22197 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝑥𝑀𝑧)) |
40 | 34, 35, 36, 39 | syl3anc 1366 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑥𝑀𝑧)) |
41 | 32 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (2 · 𝑟) ∈ ℝ) |
42 | | simprll 819 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦 ∈ 𝑋) |
43 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
44 | | metcl 22184 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑦𝑀𝑥) ∈ ℝ) |
45 | 34, 43, 35, 44 | syl3anc 1366 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑥) ∈ ℝ) |
46 | | metcl 22184 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) |
47 | 34, 43, 36, 46 | syl3anc 1366 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) ∈ ℝ) |
48 | 45, 47 | readdcld 10107 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ) |
49 | | mettri2 22193 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧))) |
50 | 34, 43, 35, 36, 49 | syl13anc 1368 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧))) |
51 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℝ) |
52 | | simplrr 818 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
53 | 35, 52 | eleqtrd 2732 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟)) |
54 | | metxmet 22186 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
55 | 34, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑀 ∈ (∞Met‘𝑋)) |
56 | | rpxr 11878 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
57 | 56 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*) |
58 | 57 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℝ*) |
59 | | elbl2 22242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟)) |
60 | 55, 58, 43, 35, 59 | syl22anc 1367 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟)) |
61 | 53, 60 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑥) < 𝑟) |
62 | 36, 52 | eleqtrd 2732 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟)) |
63 | | elbl2 22242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟)) |
64 | 55, 58, 43, 36, 63 | syl22anc 1367 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟)) |
65 | 62, 64 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) < 𝑟) |
66 | 45, 47, 51, 51, 61, 65 | lt2addd 10688 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟)) |
67 | 51 | recnd 10106 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℂ) |
68 | 67 | 2timesd 11313 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟)) |
69 | 66, 68 | breqtrrd 4713 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟)) |
70 | 38, 48, 41, 50, 69 | lelttrd 10233 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟)) |
71 | 38, 41, 70 | ltled 10223 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟)) |
72 | | elicc2 12276 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟)))) |
73 | 2, 41, 72 | sylancr 696 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟)))) |
74 | 38, 40, 71, 73 | mpbir3and 1264 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))) |
75 | 74 | ralrimivva 3000 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))) |
76 | | ffnov 6806 |
. . . . . . . . . . 11
⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))) |
77 | 33, 75, 76 | sylanbrc 699 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) |
78 | | oveq2 6698 |
. . . . . . . . . . . 12
⊢ (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟))) |
79 | 78 | feq3d 6070 |
. . . . . . . . . . 11
⊢ (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))) |
80 | 79 | rspcev 3340 |
. . . . . . . . . 10
⊢ (((2
· 𝑟) ∈ ℝ
∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
81 | 32, 77, 80 | syl2anc 694 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
82 | 81 | expr 642 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
83 | 82 | rexlimdvva 3067 |
. . . . . . 7
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
84 | 1, 83 | syl 17 |
. . . . . 6
⊢ (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
85 | 84 | adantr 480 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
86 | 27, 85 | mpd 15 |
. . . 4
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
87 | 25, 86 | pm2.61dane 2910 |
. . 3
⊢ (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
88 | 1, 87 | jca 553 |
. 2
⊢ (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
89 | | simpll 805 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋)) |
90 | | simpllr 815 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑥 ∈ ℝ) |
91 | 89 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀 ∈ (Met‘𝑋)) |
92 | | simpr 476 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
93 | | met0 22195 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) = 0) |
94 | 91, 92, 93 | syl2anc 694 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) = 0) |
95 | | simplr 807 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
96 | 95, 92, 92 | fovrnd 6848 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥)) |
97 | | elicc2 12276 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝑥
∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))) |
98 | 2, 90, 97 | sylancr 696 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))) |
99 | 96, 98 | mpbid 222 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)) |
100 | 99 | simp3d 1095 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) ≤ 𝑥) |
101 | 94, 100 | eqbrtrrd 4709 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 0 ≤ 𝑥) |
102 | 90, 101 | ge0p1rpd 11940 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈
ℝ+) |
103 | | fovrn 6846 |
. . . . . . . . . . . . . 14
⊢ ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
104 | 103 | 3expa 1284 |
. . . . . . . . . . . . 13
⊢ (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
105 | 104 | adantlll 754 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
106 | | elicc2 12276 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 𝑥
∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
107 | 2, 90, 106 | sylancr 696 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
108 | 107 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
109 | 105, 108 | mpbid 222 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)) |
110 | 109 | simp1d 1093 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) |
111 | 90 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ ℝ) |
112 | | peano2re 10247 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
113 | 90, 112 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈ ℝ) |
114 | 113 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑥 + 1) ∈ ℝ) |
115 | 109 | simp3d 1095 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ≤ 𝑥) |
116 | 111 | ltp1d 10992 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝑥 < (𝑥 + 1)) |
117 | 110, 111,
114, 115, 116 | lelttrd 10233 |
. . . . . . . . 9
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1)) |
118 | 117 | ralrimiva 2995 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) < (𝑥 + 1)) |
119 | | rabid2 3148 |
. . . . . . . 8
⊢ (𝑋 = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) < (𝑥 + 1)) |
120 | 118, 119 | sylibr 224 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑋 = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
121 | 91, 54 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
122 | 113 | rexrd 10127 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈
ℝ*) |
123 | | blval 22238 |
. . . . . . . 8
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ (𝑥 + 1) ∈ ℝ*) →
(𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
124 | 121, 92, 122, 123 | syl3anc 1366 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
125 | 120, 124 | eqtr4d 2688 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) |
126 | | oveq2 6698 |
. . . . . . . 8
⊢ (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1))) |
127 | 126 | eqeq2d 2661 |
. . . . . . 7
⊢ (𝑟 = (𝑥 + 1) → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1)))) |
128 | 127 | rspcev 3340 |
. . . . . 6
⊢ (((𝑥 + 1) ∈ ℝ+
∧ 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
129 | 102, 125,
128 | syl2anc 694 |
. . . . 5
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
130 | 129 | ralrimiva 2995 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
131 | | isbnd 33709 |
. . . 4
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))) |
132 | 89, 130, 131 | sylanbrc 699 |
. . 3
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋)) |
133 | 132 | r19.29an 3106 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋)) |
134 | 88, 133 | impbii 199 |
1
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |