![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isbn | Structured version Visualization version GIF version |
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
isbn.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
isbn | ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3947 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp)) | |
2 | 1 | anbi1i 610 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp)) |
3 | fveq2 6333 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
4 | isbn.1 | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | 3, 4 | syl6eqr 2823 | . . . 4 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
6 | 5 | eleq1d 2835 | . . 3 ⊢ (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ CMetSp ↔ 𝐹 ∈ CMetSp)) |
7 | df-bn 23352 | . . 3 ⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} | |
8 | 6, 7 | elrab2 3518 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp)) |
9 | df-3an 1073 | . 2 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp)) | |
10 | 2, 8, 9 | 3bitr4i 292 | 1 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ‘cfv 6030 Scalarcsca 16152 NrmVeccnvc 22606 CMetSpccms 23348 Bancbn 23349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-bn 23352 |
This theorem is referenced by: bnsca 23355 bnnvc 23356 bncms 23360 lssbn 23367 srabn 23375 ishl2 23385 |
Copyright terms: Public domain | W3C validator |