![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isbasisrelowl | Structured version Visualization version GIF version |
Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.) |
Ref | Expression |
---|---|
isbasisrelowl.1 | ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) |
Ref | Expression |
---|---|
isbasisrelowl | ⊢ 𝐼 ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisrelowl.1 | . . 3 ⊢ 𝐼 = ([,) “ (ℝ × ℝ)) | |
2 | df-ico 12370 | . . . . 5 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
3 | 2 | ixxex 12375 | . . . 4 ⊢ [,) ∈ V |
4 | imaexg 7264 | . . . 4 ⊢ ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ([,) “ (ℝ × ℝ)) ∈ V |
6 | 1, 5 | eqeltri 2831 | . 2 ⊢ 𝐼 ∈ V |
7 | 1 | icoreclin 33512 | . . 3 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
8 | 7 | rgen2a 3111 | . 2 ⊢ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼 |
9 | fiinbas 20954 | . 2 ⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑥 ∩ 𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases) | |
10 | 6, 8, 9 | mp2an 710 | 1 ⊢ 𝐼 ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1628 ∈ wcel 2135 ∀wral 3046 Vcvv 3336 ∩ cin 3710 × cxp 5260 “ cima 5265 ℝcr 10123 < clt 10262 ≤ cle 10263 [,)cico 12366 TopBasesctb 20947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-pre-lttri 10198 ax-pre-lttrn 10199 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-po 5183 df-so 5184 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-1st 7329 df-2nd 7330 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-ico 12370 df-bases 20948 |
This theorem is referenced by: istoprelowl 33515 |
Copyright terms: Public domain | W3C validator |