Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbasisrelowl Structured version   Visualization version   GIF version

Theorem isbasisrelowl 33513
Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
isbasisrelowl 𝐼 ∈ TopBases

Proof of Theorem isbasisrelowl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisrelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
2 df-ico 12370 . . . . 5 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32ixxex 12375 . . . 4 [,) ∈ V
4 imaexg 7264 . . . 4 ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V)
53, 4ax-mp 5 . . 3 ([,) “ (ℝ × ℝ)) ∈ V
61, 5eqeltri 2831 . 2 𝐼 ∈ V
71icoreclin 33512 . . 3 ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
87rgen2a 3111 . 2 𝑥𝐼𝑦𝐼 (𝑥𝑦) ∈ 𝐼
9 fiinbas 20954 . 2 ((𝐼 ∈ V ∧ ∀𝑥𝐼𝑦𝐼 (𝑥𝑦) ∈ 𝐼) → 𝐼 ∈ TopBases)
106, 8, 9mp2an 710 1 𝐼 ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:   = wceq 1628  wcel 2135  wral 3046  Vcvv 3336  cin 3710   × cxp 5260  cima 5265  cr 10123   < clt 10262  cle 10263  [,)cico 12366  TopBasesctb 20947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-pre-lttri 10198  ax-pre-lttrn 10199
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-po 5183  df-so 5184  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-1st 7329  df-2nd 7330  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-ico 12370  df-bases 20948
This theorem is referenced by:  istoprelowl  33515
  Copyright terms: Public domain W3C validator