MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbasis2g Structured version   Visualization version   GIF version

Theorem isbasis2g 20975
Description: Express the predicate "𝐵 is a basis for a topology." (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasis2g (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem isbasis2g
StepHypRef Expression
1 isbasisg 20974 . 2 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
2 dfss3 3734 . . . 4 ((𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)))
3 elin 3940 . . . . . . . . . 10 (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ∈ 𝒫 (𝑥𝑦)))
4 selpw 4310 . . . . . . . . . . 11 (𝑤 ∈ 𝒫 (𝑥𝑦) ↔ 𝑤 ⊆ (𝑥𝑦))
54anbi2i 732 . . . . . . . . . 10 ((𝑤𝐵𝑤 ∈ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ⊆ (𝑥𝑦)))
63, 5bitri 264 . . . . . . . . 9 (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ⊆ (𝑥𝑦)))
76anbi2i 732 . . . . . . . 8 ((𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ (𝑧𝑤 ∧ (𝑤𝐵𝑤 ⊆ (𝑥𝑦))))
8 an12 873 . . . . . . . 8 ((𝑧𝑤 ∧ (𝑤𝐵𝑤 ⊆ (𝑥𝑦))) ↔ (𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
97, 8bitri 264 . . . . . . 7 ((𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ (𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
109exbii 1923 . . . . . 6 (∃𝑤(𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ ∃𝑤(𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
11 eluni 4592 . . . . . 6 (𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))))
12 df-rex 3057 . . . . . 6 (∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ ∃𝑤(𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1310, 11, 123bitr4i 292 . . . . 5 (𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1413ralbii 3119 . . . 4 (∀𝑧 ∈ (𝑥𝑦)𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
152, 14bitri 264 . . 3 ((𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
16152ralbii 3120 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
171, 16syl6bb 276 1 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wex 1853  wcel 2140  wral 3051  wrex 3052  cin 3715  wss 3716  𝒫 cpw 4303   cuni 4589  TopBasesctb 20972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-v 3343  df-in 3723  df-ss 3730  df-pw 4305  df-uni 4590  df-bases 20973
This theorem is referenced by:  isbasis3g  20976  basis2  20978  fiinbas  20979  tgclb  20997  topbas  20999  restbas  21185  txbas  21593  blbas  22457
  Copyright terms: Public domain W3C validator