Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isassintop Structured version   Visualization version   GIF version

Theorem isassintop 42171
Description: The predicate "is an associative (closed internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
isassintop (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem isassintop
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 assintopmap 42167 . . . . 5 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀})
21eleq2d 2716 . . . 4 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}))
3 breq1 4688 . . . . 5 (𝑜 = → (𝑜 assLaw 𝑀 assLaw 𝑀))
43elrab 3396 . . . 4 ( ∈ {𝑜 ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀))
52, 4syl6bb 276 . . 3 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)))
6 elmapi 7921 . . . . . 6 ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
76ad2antrl 764 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → :(𝑀 × 𝑀)⟶𝑀)
8 isasslaw 42153 . . . . . . . 8 (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
98biimpd 219 . . . . . . 7 (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ 𝑀𝑉) → ( assLaw 𝑀 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
109impancom 455 . . . . . 6 (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀) → (𝑀𝑉 → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1110impcom 445 . . . . 5 ((𝑀𝑉 ∧ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))
127, 11jca 553 . . . 4 ((𝑀𝑉 ∧ ( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀)) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
1312ex 449 . . 3 (𝑀𝑉 → (( ∈ (𝑀𝑚 (𝑀 × 𝑀)) ∧ assLaw 𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
145, 13sylbid 230 . 2 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) → ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
15 isclintop 42168 . . . . . . 7 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))
1615biimprcd 240 . . . . . 6 ( :(𝑀 × 𝑀)⟶𝑀 → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1716adantr 480 . . . . 5 (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → (𝑀𝑉 ∈ ( clIntOp ‘𝑀)))
1817impcom 445 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( clIntOp ‘𝑀))
19 sqxpexg 7005 . . . . . . . . 9 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
20 fex 6530 . . . . . . . . 9 (( :(𝑀 × 𝑀)⟶𝑀 ∧ (𝑀 × 𝑀) ∈ V) → ∈ V)
2119, 20sylan2 490 . . . . . . . 8 (( :(𝑀 × 𝑀)⟶𝑀𝑀𝑉) → ∈ V)
2221ancoms 468 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → ∈ V)
23 simpl 472 . . . . . . 7 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → 𝑀𝑉)
24 isasslaw 42153 . . . . . . . 8 (( ∈ V ∧ 𝑀𝑉) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2524bicomd 213 . . . . . . 7 (( ∈ V ∧ 𝑀𝑉) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2622, 23, 25syl2anc 694 . . . . . 6 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ assLaw 𝑀))
2726biimpd 219 . . . . 5 ((𝑀𝑉 :(𝑀 × 𝑀)⟶𝑀) → (∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → assLaw 𝑀))
2827impr 648 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → assLaw 𝑀)
29 assintopval 42166 . . . . . . 7 (𝑀𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3029adantr 480 . . . . . 6 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀})
3130eleq2d 2716 . . . . 5 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}))
323elrab 3396 . . . . 5 ( ∈ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀))
3331, 32syl6bb 276 . . . 4 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ( ∈ ( assIntOp ‘𝑀) ↔ ( ∈ ( clIntOp ‘𝑀) ∧ assLaw 𝑀)))
3418, 28, 33mpbir2and 977 . . 3 ((𝑀𝑉 ∧ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))) → ∈ ( assIntOp ‘𝑀))
3534ex 449 . 2 (𝑀𝑉 → (( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))) → ∈ ( assIntOp ‘𝑀)))
3614, 35impbid 202 1 (𝑀𝑉 → ( ∈ ( assIntOp ‘𝑀) ↔ ( :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231   class class class wbr 4685   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899   assLaw casslaw 42145   clIntOp cclintop 42158   assIntOp cassintop 42159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-asslaw 42149  df-intop 42160  df-clintop 42161  df-assintop 42162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator