Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchiofld Structured version   Visualization version   GIF version

Theorem isarchiofld 29945
Description: Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
isarchiofld.b 𝐵 = (Base‘𝑊)
isarchiofld.h 𝐻 = (ℤRHom‘𝑊)
isarchiofld.l < = (lt‘𝑊)
Assertion
Ref Expression
isarchiofld (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑊,𝑥   𝑥,𝐻   < ,𝑛,𝑥
Allowed substitution hint:   𝐻(𝑛)

Proof of Theorem isarchiofld
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isofld 29930 . . . 4 (𝑊 ∈ oField ↔ (𝑊 ∈ Field ∧ 𝑊 ∈ oRing))
21simprbi 479 . . 3 (𝑊 ∈ oField → 𝑊 ∈ oRing)
3 orngogrp 29929 . . 3 (𝑊 ∈ oRing → 𝑊 ∈ oGrp)
4 isarchiofld.b . . . 4 𝐵 = (Base‘𝑊)
5 eqid 2651 . . . 4 (0g𝑊) = (0g𝑊)
6 isarchiofld.l . . . 4 < = (lt‘𝑊)
7 eqid 2651 . . . 4 (.g𝑊) = (.g𝑊)
84, 5, 6, 7isarchi3 29869 . . 3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
92, 3, 83syl 18 . 2 (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
10 orngring 29928 . . . . . . 7 (𝑊 ∈ oRing → 𝑊 ∈ Ring)
11 eqid 2651 . . . . . . . 8 (1r𝑊) = (1r𝑊)
124, 11ringidcl 18614 . . . . . . 7 (𝑊 ∈ Ring → (1r𝑊) ∈ 𝐵)
132, 10, 123syl 18 . . . . . 6 (𝑊 ∈ oField → (1r𝑊) ∈ 𝐵)
14 breq2 4689 . . . . . . . . 9 (𝑦 = (1r𝑊) → ((0g𝑊) < 𝑦 ↔ (0g𝑊) < (1r𝑊)))
15 oveq2 6698 . . . . . . . . . . 11 (𝑦 = (1r𝑊) → (𝑛(.g𝑊)𝑦) = (𝑛(.g𝑊)(1r𝑊)))
1615breq2d 4697 . . . . . . . . . 10 (𝑦 = (1r𝑊) → (𝑥 < (𝑛(.g𝑊)𝑦) ↔ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
1716rexbidv 3081 . . . . . . . . 9 (𝑦 = (1r𝑊) → (∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
1814, 17imbi12d 333 . . . . . . . 8 (𝑦 = (1r𝑊) → (((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
1918ralbidv 3015 . . . . . . 7 (𝑦 = (1r𝑊) → (∀𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
2019rspcv 3336 . . . . . 6 ((1r𝑊) ∈ 𝐵 → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
2113, 20syl 17 . . . . 5 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊)))))
225, 11, 6ofldlt1 29941 . . . . . . 7 (𝑊 ∈ oField → (0g𝑊) < (1r𝑊))
23 pm5.5 350 . . . . . . 7 ((0g𝑊) < (1r𝑊) → (((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2422, 23syl 17 . . . . . 6 (𝑊 ∈ oField → (((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2524ralbidv 3015 . . . . 5 (𝑊 ∈ oField → (∀𝑥𝐵 ((0g𝑊) < (1r𝑊) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
2621, 25sylibd 229 . . . 4 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
272, 10syl 17 . . . . . . . 8 (𝑊 ∈ oField → 𝑊 ∈ Ring)
28 nnz 11437 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
29 isarchiofld.h . . . . . . . . 9 𝐻 = (ℤRHom‘𝑊)
3029, 7, 11zrhmulg 19906 . . . . . . . 8 ((𝑊 ∈ Ring ∧ 𝑛 ∈ ℤ) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
3127, 28, 30syl2an 493 . . . . . . 7 ((𝑊 ∈ oField ∧ 𝑛 ∈ ℕ) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
3231breq2d 4697 . . . . . 6 ((𝑊 ∈ oField ∧ 𝑛 ∈ ℕ) → (𝑥 < (𝐻𝑛) ↔ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3332rexbidva 3078 . . . . 5 (𝑊 ∈ oField → (∃𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3433ralbidv 3015 . . . 4 (𝑊 ∈ oField → (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)(1r𝑊))))
3526, 34sylibrd 249 . . 3 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
36 nfv 1883 . . . . . . . 8 𝑥 𝑊 ∈ oField
37 nfra1 2970 . . . . . . . 8 𝑥𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)
3836, 37nfan 1868 . . . . . . 7 𝑥(𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛))
39 nfv 1883 . . . . . . 7 𝑥 𝑦𝐵
4038, 39nfan 1868 . . . . . 6 𝑥((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵)
4127ad3antrrr 766 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑊 ∈ Ring)
42 simplrr 818 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑥𝐵)
43 simplrl 817 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦𝐵)
44 simpr 476 . . . . . . . . . . . . . 14 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) < 𝑦)
45 simplll 813 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑊 ∈ oField)
46 ringgrp 18598 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
474, 5grpidcl 17497 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Grp → (0g𝑊) ∈ 𝐵)
4841, 46, 473syl 18 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) ∈ 𝐵)
496pltne 17009 . . . . . . . . . . . . . . 15 ((𝑊 ∈ oField ∧ (0g𝑊) ∈ 𝐵𝑦𝐵) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
5045, 48, 43, 49syl3anc 1366 . . . . . . . . . . . . . 14 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
5144, 50mpd 15 . . . . . . . . . . . . 13 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (0g𝑊) ≠ 𝑦)
5251necomd 2878 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦 ≠ (0g𝑊))
531simplbi 475 . . . . . . . . . . . . . 14 (𝑊 ∈ oField → 𝑊 ∈ Field)
54 isfld 18804 . . . . . . . . . . . . . . 15 (𝑊 ∈ Field ↔ (𝑊 ∈ DivRing ∧ 𝑊 ∈ CRing))
5554simplbi 475 . . . . . . . . . . . . . 14 (𝑊 ∈ Field → 𝑊 ∈ DivRing)
5653, 55syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ oField → 𝑊 ∈ DivRing)
57 eqid 2651 . . . . . . . . . . . . . 14 (Unit‘𝑊) = (Unit‘𝑊)
584, 57, 5drngunit 18800 . . . . . . . . . . . . 13 (𝑊 ∈ DivRing → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
5945, 56, 583syl 18 . . . . . . . . . . . 12 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
6043, 52, 59mpbir2and 977 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → 𝑦 ∈ (Unit‘𝑊))
61 eqid 2651 . . . . . . . . . . . 12 (/r𝑊) = (/r𝑊)
624, 57, 61dvrcl 18732 . . . . . . . . . . 11 ((𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ (Unit‘𝑊)) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
6341, 42, 60, 62syl3anc 1366 . . . . . . . . . 10 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
64 simpr 476 . . . . . . . . . . . 12 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛))
65 breq1 4688 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 < (𝐻𝑛) ↔ 𝑧 < (𝐻𝑛)))
6665rexbidv 3081 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 < (𝐻𝑛)))
6766cbvralv 3201 . . . . . . . . . . . 12 (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) ↔ ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
6864, 67sylib 208 . . . . . . . . . . 11 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
6968ad2antrr 762 . . . . . . . . . 10 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛))
70 breq1 4688 . . . . . . . . . . . 12 (𝑧 = (𝑥(/r𝑊)𝑦) → (𝑧 < (𝐻𝑛) ↔ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7170rexbidv 3081 . . . . . . . . . . 11 (𝑧 = (𝑥(/r𝑊)𝑦) → (∃𝑛 ∈ ℕ 𝑧 < (𝐻𝑛) ↔ ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7271rspcv 3336 . . . . . . . . . 10 ((𝑥(/r𝑊)𝑦) ∈ 𝐵 → (∀𝑧𝐵𝑛 ∈ ℕ 𝑧 < (𝐻𝑛) → ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)))
7363, 69, 72sylc 65 . . . . . . . . 9 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛))
74 eqid 2651 . . . . . . . . . . . . . 14 (.r𝑊) = (.r𝑊)
75 simp-4l 823 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ oField)
7675, 2syl 17 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ oRing)
7775, 27syl 17 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ Ring)
78 simp-4r 824 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑦𝐵𝑥𝐵))
7978simprd 478 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑥𝐵)
8078simpld 474 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦𝐵)
81 simpllr 815 . . . . . . . . . . . . . . . . . 18 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) < 𝑦)
8277, 46, 473syl 18 . . . . . . . . . . . . . . . . . . 19 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) ∈ 𝐵)
8375, 82, 80, 49syl3anc 1366 . . . . . . . . . . . . . . . . . 18 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((0g𝑊) < 𝑦 → (0g𝑊) ≠ 𝑦))
8481, 83mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (0g𝑊) ≠ 𝑦)
8584necomd 2878 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦 ≠ (0g𝑊))
8675, 56, 583syl 18 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑦 ∈ (Unit‘𝑊) ↔ (𝑦𝐵𝑦 ≠ (0g𝑊))))
8780, 85, 86mpbir2and 977 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑦 ∈ (Unit‘𝑊))
8877, 79, 87, 62syl3anc 1366 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑥(/r𝑊)𝑦) ∈ 𝐵)
89 simplr 807 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑛 ∈ ℕ)
9075, 89, 31syl2anc 694 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝐻𝑛) = (𝑛(.g𝑊)(1r𝑊)))
9177, 46syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ Grp)
9289, 28syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑛 ∈ ℤ)
9377, 12syl 17 . . . . . . . . . . . . . . . 16 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (1r𝑊) ∈ 𝐵)
944, 7mulgcl 17606 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ (1r𝑊) ∈ 𝐵) → (𝑛(.g𝑊)(1r𝑊)) ∈ 𝐵)
9591, 92, 93, 94syl3anc 1366 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑛(.g𝑊)(1r𝑊)) ∈ 𝐵)
9690, 95eqeltrd 2730 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝐻𝑛) ∈ 𝐵)
9775, 56syl 17 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑊 ∈ DivRing)
98 simpr 476 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑥(/r𝑊)𝑦) < (𝐻𝑛))
994, 74, 5, 76, 88, 96, 80, 6, 97, 98, 81orngrmullt 29936 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) < ((𝐻𝑛)(.r𝑊)𝑦))
1004, 57, 61, 74dvrcan1 18737 . . . . . . . . . . . . . 14 ((𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ (Unit‘𝑊)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) = 𝑥)
10177, 79, 87, 100syl3anc 1366 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑥(/r𝑊)𝑦)(.r𝑊)𝑦) = 𝑥)
10290oveq1d 6705 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝐻𝑛)(.r𝑊)𝑦) = ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦))
1034, 7, 74mulgass2 18647 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Ring ∧ (𝑛 ∈ ℤ ∧ (1r𝑊) ∈ 𝐵𝑦𝐵)) → ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦) = (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)))
10477, 92, 93, 80, 103syl13anc 1368 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝑛(.g𝑊)(1r𝑊))(.r𝑊)𝑦) = (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)))
1054, 74, 11ringlidm 18617 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑊)(.r𝑊)𝑦) = 𝑦)
10677, 80, 105syl2anc 694 . . . . . . . . . . . . . . 15 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((1r𝑊)(.r𝑊)𝑦) = 𝑦)
107106oveq2d 6706 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → (𝑛(.g𝑊)((1r𝑊)(.r𝑊)𝑦)) = (𝑛(.g𝑊)𝑦))
108102, 104, 1073eqtrd 2689 . . . . . . . . . . . . 13 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → ((𝐻𝑛)(.r𝑊)𝑦) = (𝑛(.g𝑊)𝑦))
10999, 101, 1083brtr3d 4716 . . . . . . . . . . . 12 (((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) ∧ (𝑥(/r𝑊)𝑦) < (𝐻𝑛)) → 𝑥 < (𝑛(.g𝑊)𝑦))
110109ex 449 . . . . . . . . . . 11 ((((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) ∧ 𝑛 ∈ ℕ) → ((𝑥(/r𝑊)𝑦) < (𝐻𝑛) → 𝑥 < (𝑛(.g𝑊)𝑦)))
111110reximdva 3046 . . . . . . . . . 10 (((𝑊 ∈ oField ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
112111adantllr 755 . . . . . . . . 9 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → (∃𝑛 ∈ ℕ (𝑥(/r𝑊)𝑦) < (𝐻𝑛) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
11373, 112mpd 15 . . . . . . . 8 ((((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) ∧ (0g𝑊) < 𝑦) → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))
114113ex 449 . . . . . . 7 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ (𝑦𝐵𝑥𝐵)) → ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
115114expr 642 . . . . . 6 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵) → (𝑥𝐵 → ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
11640, 115ralrimi 2986 . . . . 5 (((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) ∧ 𝑦𝐵) → ∀𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
117116ralrimiva 2995 . . . 4 ((𝑊 ∈ oField ∧ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)) → ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)))
118117ex 449 . . 3 (𝑊 ∈ oField → (∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛) → ∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦))))
11935, 118impbid 202 . 2 (𝑊 ∈ oField → (∀𝑦𝐵𝑥𝐵 ((0g𝑊) < 𝑦 → ∃𝑛 ∈ ℕ 𝑥 < (𝑛(.g𝑊)𝑦)) ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
1209, 119bitrd 268 1 (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  cn 11058  cz 11415  Basecbs 15904  .rcmulr 15989  0gc0g 16147  ltcplt 16988  Grpcgrp 17469  .gcmg 17587  1rcur 18547  Ringcrg 18593  CRingccrg 18594  Unitcui 18685  /rcdvr 18728  DivRingcdr 18795  Fieldcfield 18796  ℤRHomczrh 19896  oGrpcogrp 29826  Archicarchi 29859  oRingcorng 29923  oFieldcofld 29924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-seq 12842  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-preset 16975  df-poset 16993  df-plt 17005  df-toset 17081  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-omnd 29827  df-ogrp 29828  df-inftm 29860  df-archi 29861  df-orng 29925  df-ofld 29926
This theorem is referenced by:  rearchi  29970
  Copyright terms: Public domain W3C validator