Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi3 Structured version   Visualization version   GIF version

Theorem isarchi3 30072
Description: This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi3.b 𝐵 = (Base‘𝑊)
isarchi3.0 0 = (0g𝑊)
isarchi3.i < = (lt‘𝑊)
isarchi3.x · = (.g𝑊)
Assertion
Ref Expression
isarchi3 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦   < ,𝑛   · ,𝑛   0 ,𝑛
Allowed substitution hints:   < (𝑥,𝑦)   · (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isarchi3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isogrp 30033 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
21simprbi 483 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
3 omndtos 30036 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
42, 3syl 17 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Toset)
5 grpmnd 17651 . . . . 5 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
65adantr 472 . . . 4 ((𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd) → 𝑊 ∈ Mnd)
71, 6sylbi 207 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Mnd)
8 isarchi3.b . . . 4 𝐵 = (Base‘𝑊)
9 isarchi3.0 . . . 4 0 = (0g𝑊)
10 isarchi3.x . . . 4 · = (.g𝑊)
11 eqid 2761 . . . 4 (le‘𝑊) = (le‘𝑊)
12 isarchi3.i . . . 4 < = (lt‘𝑊)
138, 9, 10, 11, 12isarchi2 30070 . . 3 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
144, 7, 13syl2anc 696 . 2 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))))
15 simpr 479 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1615adantr 472 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑛 ∈ ℕ)
1716peano2nnd 11250 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 + 1) ∈ ℕ)
18 simp-4l 825 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ oGrp)
1918adantr 472 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ oGrp)
20 ogrpgrp 30034 . . . . . . . . . . . . 13 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
218, 9grpidcl 17672 . . . . . . . . . . . . 13 (𝑊 ∈ Grp → 0𝐵)
2219, 20, 213syl 18 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0𝐵)
23 simp-4r 827 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
2423adantr 472 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑥𝐵)
2520ad4antr 771 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Grp)
2615nnzd 11694 . . . . . . . . . . . . . 14 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
278, 10mulgcl 17781 . . . . . . . . . . . . . 14 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥𝐵) → (𝑛 · 𝑥) ∈ 𝐵)
2825, 26, 23, 27syl3anc 1477 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
2928adantr 472 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) ∈ 𝐵)
30 simpllr 817 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 0 < 𝑥)
31 eqid 2761 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
328, 12, 31ogrpaddlt 30049 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑥𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) ∧ 0 < 𝑥) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3319, 22, 24, 29, 30, 32syl131anc 1490 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) < (𝑥(+g𝑊)(𝑛 · 𝑥)))
3419, 20syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ Grp)
358, 31, 9grplid 17674 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ (𝑛 · 𝑥) ∈ 𝐵) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
3634, 29, 35syl2anc 696 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ( 0 (+g𝑊)(𝑛 · 𝑥)) = (𝑛 · 𝑥))
37 nncn 11241 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 10207 . . . . . . . . . . . . . . 15 1 ∈ ℂ
39 addcom 10435 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 + 1) = (1 + 𝑛))
4037, 38, 39sylancl 697 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 + 1) = (1 + 𝑛))
4140oveq1d 6830 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
4216, 41syl 17 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((𝑛 + 1) · 𝑥) = ((1 + 𝑛) · 𝑥))
43 grpsgrp 17668 . . . . . . . . . . . . . 14 (𝑊 ∈ Grp → 𝑊 ∈ SGrp)
4419, 20, 433syl 18 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑊 ∈ SGrp)
45 1nn 11244 . . . . . . . . . . . . . 14 1 ∈ ℕ
4645a1i 11 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 1 ∈ ℕ)
478, 10, 31mulgnndir 17791 . . . . . . . . . . . . 13 ((𝑊 ∈ SGrp ∧ (1 ∈ ℕ ∧ 𝑛 ∈ ℕ ∧ 𝑥𝐵)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
4844, 46, 16, 24, 47syl13anc 1479 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 + 𝑛) · 𝑥) = ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)))
498, 10mulg1 17770 . . . . . . . . . . . . . 14 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
5024, 49syl 17 . . . . . . . . . . . . 13 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (1 · 𝑥) = 𝑥)
5150oveq1d 6830 . . . . . . . . . . . 12 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ((1 · 𝑥)(+g𝑊)(𝑛 · 𝑥)) = (𝑥(+g𝑊)(𝑛 · 𝑥)))
5242, 48, 513eqtrrd 2800 . . . . . . . . . . 11 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑥(+g𝑊)(𝑛 · 𝑥)) = ((𝑛 + 1) · 𝑥))
5333, 36, 523brtr3d 4836 . . . . . . . . . 10 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥))
54 tospos 29989 . . . . . . . . . . . . 13 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
5518, 4, 543syl 18 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Poset)
56 simpllr 817 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
5726peano2zd 11698 . . . . . . . . . . . . 13 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℤ)
588, 10mulgcl 17781 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑥𝐵) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
5925, 57, 23, 58syl3anc 1477 . . . . . . . . . . . 12 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) · 𝑥) ∈ 𝐵)
608, 11, 12plelttr 17194 . . . . . . . . . . . 12 ((𝑊 ∈ Poset ∧ (𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ ((𝑛 + 1) · 𝑥) ∈ 𝐵)) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6155, 56, 28, 59, 60syl13anc 1479 . . . . . . . . . . 11 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑦(le‘𝑊)(𝑛 · 𝑥) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥)))
6261impl 651 . . . . . . . . . 10 (((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ∧ (𝑛 · 𝑥) < ((𝑛 + 1) · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
6353, 62mpdan 705 . . . . . . . . 9 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → 𝑦 < ((𝑛 + 1) · 𝑥))
64 oveq1 6822 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑥) = ((𝑛 + 1) · 𝑥))
6564breq2d 4817 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < ((𝑛 + 1) · 𝑥)))
6665rspcev 3450 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ 𝑦 < ((𝑛 + 1) · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6717, 63, 66syl2anc 696 . . . . . . . 8 ((((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) ∧ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
6867r19.29an 3216 . . . . . . 7 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥))
69 oveq1 6822 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚 · 𝑥) = (𝑛 · 𝑥))
7069breq2d 4817 . . . . . . . 8 (𝑚 = 𝑛 → (𝑦 < (𝑚 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑥)))
7170cbvrexv 3312 . . . . . . 7 (∃𝑚 ∈ ℕ 𝑦 < (𝑚 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7268, 71sylib 208 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))
7311, 12pltle 17183 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑦𝐵 ∧ (𝑛 · 𝑥) ∈ 𝐵) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7418, 56, 28, 73syl3anc 1477 . . . . . . . 8 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑦 < (𝑛 · 𝑥) → 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7574reximdva 3156 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)))
7675imp 444 . . . . . 6 (((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) ∧ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥))
7772, 76impbida 913 . . . . 5 ((((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 0 < 𝑥) → (∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))
7877pm5.74da 725 . . . 4 (((𝑊 ∈ oGrp ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
7978ralbidva 3124 . . 3 ((𝑊 ∈ oGrp ∧ 𝑥𝐵) → (∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8079ralbidva 3124 . 2 (𝑊 ∈ oGrp → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦(le‘𝑊)(𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
8114, 80bitrd 268 1 (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  wrex 3052   class class class wbr 4805  cfv 6050  (class class class)co 6815  cc 10147  1c1 10150   + caddc 10152  cn 11233  cz 11590  Basecbs 16080  +gcplusg 16164  lecple 16171  0gc0g 16323  Posetcpo 17162  ltcplt 17163  Tosetctos 17255  SGrpcsgrp 17505  Mndcmnd 17516  Grpcgrp 17644  .gcmg 17762  oMndcomnd 30028  oGrpcogrp 30029  Archicarchi 30062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-seq 13017  df-0g 16325  df-preset 17150  df-poset 17168  df-plt 17180  df-toset 17256  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648  df-mulg 17763  df-omnd 30030  df-ogrp 30031  df-inftm 30063  df-archi 30064
This theorem is referenced by:  archiexdiv  30075  isarchiofld  30148
  Copyright terms: Public domain W3C validator