![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredlmul | Structured version Visualization version GIF version |
Description: The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredrmul.u | ⊢ 𝑈 = (Unit‘𝑅) |
irredrmul.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
irredlmul | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝐼) → (𝑋 · 𝑌) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | irredrmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | eqid 2760 | . . 3 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
4 | eqid 2760 | . . 3 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
5 | 1, 2, 3, 4 | opprmul 18826 | . 2 ⊢ (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 · 𝑌) |
6 | 3 | opprring 18831 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
7 | irredn0.i | . . . . . 6 ⊢ 𝐼 = (Irred‘𝑅) | |
8 | 3, 7 | opprirred 18902 | . . . . 5 ⊢ 𝐼 = (Irred‘(oppr‘𝑅)) |
9 | irredrmul.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
10 | 9, 3 | opprunit 18861 | . . . . 5 ⊢ 𝑈 = (Unit‘(oppr‘𝑅)) |
11 | 8, 10, 4 | irredrmul 18907 | . . . 4 ⊢ (((oppr‘𝑅) ∈ Ring ∧ 𝑌 ∈ 𝐼 ∧ 𝑋 ∈ 𝑈) → (𝑌(.r‘(oppr‘𝑅))𝑋) ∈ 𝐼) |
12 | 6, 11 | syl3an1 1167 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐼 ∧ 𝑋 ∈ 𝑈) → (𝑌(.r‘(oppr‘𝑅))𝑋) ∈ 𝐼) |
13 | 12 | 3com23 1121 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝐼) → (𝑌(.r‘(oppr‘𝑅))𝑋) ∈ 𝐼) |
14 | 5, 13 | syl5eqelr 2844 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝐼) → (𝑋 · 𝑌) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 .rcmulr 16144 Ringcrg 18747 opprcoppr 18822 Unitcui 18839 Irredcir 18840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-dvdsr 18841 df-unit 18842 df-irred 18843 df-invr 18872 df-dvr 18883 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |