Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem5 Structured version   Visualization version   GIF version

Theorem irrapxlem5 37707
Description: Lemma for irrapx1 37709. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem irrapxlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
21rpreccld 11920 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (1 / 𝐵) ∈ ℝ+)
32rprege0d 11917 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)))
4 flge0nn0 12661 . . . 4 (((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
5 nn0p1nn 11370 . . . 4 ((⌊‘(1 / 𝐵)) ∈ ℕ0 → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
63, 4, 53syl 18 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
7 irrapxlem4 37706 . . 3 ((𝐴 ∈ ℝ+ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
86, 7syldan 486 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
9 simplrr 818 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℕ)
10 nnq 11839 . . . . . . 7 (𝑏 ∈ ℕ → 𝑏 ∈ ℚ)
119, 10syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℚ)
12 simplrl 817 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ)
13 nnq 11839 . . . . . . 7 (𝑎 ∈ ℕ → 𝑎 ∈ ℚ)
1412, 13syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℚ)
1512nnne0d 11103 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≠ 0)
16 qdivcl 11847 . . . . . 6 ((𝑏 ∈ ℚ ∧ 𝑎 ∈ ℚ ∧ 𝑎 ≠ 0) → (𝑏 / 𝑎) ∈ ℚ)
1711, 14, 15, 16syl3anc 1366 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℚ)
189nnrpd 11908 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ+)
1912nnrpd 11908 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ+)
2018, 19rpdivcld 11927 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ+)
2120rpgt0d 11913 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑏 / 𝑎))
2212nnred 11073 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ)
2312nnnn0d 11389 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ0)
2423nn0ge0d 11392 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ 𝑎)
2522, 24absidd 14205 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘𝑎) = 𝑎)
2625eqcomd 2657 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 = (abs‘𝑎))
2726oveq1d 6705 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
2812nncnd 11074 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℂ)
29 qre 11831 . . . . . . . . . . . . 13 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℝ)
3017, 29syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ)
31 rpre 11877 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
3231ad3antrrr 766 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℝ)
3330, 32resubcld 10496 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℝ)
3433recnd 10106 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℂ)
3528, 34absmuld 14237 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
3627, 35eqtr4d 2688 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))))
37 qcn 11840 . . . . . . . . . . . 12 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℂ)
3817, 37syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℂ)
39 rpcn 11879 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4039ad3antrrr 766 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℂ)
4128, 38, 40subdid 10524 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)))
429nncnd 11074 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℂ)
4342, 28, 15divcan2d 10841 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (𝑏 / 𝑎)) = 𝑏)
4428, 40mulcomd 10099 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐴) = (𝐴 · 𝑎))
4543, 44oveq12d 6708 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4641, 45eqtrd 2685 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4746fveq2d 6233 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑏 − (𝐴 · 𝑎))))
4832, 22remulcld 10108 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℝ)
4948recnd 10106 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℂ)
5042, 49abssubd 14236 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑏 − (𝐴 · 𝑎))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
5136, 47, 503eqtrd 2689 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
529nnred 11073 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ)
5348, 52resubcld 10496 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
5453recnd 10106 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
5554abscld 14219 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
56 simpllr 815 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ+)
5756rprecred 11921 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ)
5856rpreccld 11920 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ+)
5958rpge0d 11914 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (1 / 𝐵))
6057, 59, 4syl2anc 694 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
6160, 5syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
6261nnrpd 11908 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ+)
6362, 19ifcld 4164 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ+)
6463rprecred 11921 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ∈ ℝ)
6556rpred 11910 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ)
6622, 65remulcld 10108 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐵) ∈ ℝ)
67 simpr 476 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
6858rprecred 11921 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ∈ ℝ)
6961nnred 11073 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ)
7069, 22ifcld 4164 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ)
71 fllep1 12642 . . . . . . . . . . . 12 ((1 / 𝐵) ∈ ℝ → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
7257, 71syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
73 max2 12056 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7422, 69, 73syl2anc 694 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7557, 69, 70, 72, 74letrd 10232 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7658, 63lerecd 11929 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵))))
7775, 76mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵)))
7865recnd 10106 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℂ)
7956rpne0d 11915 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ≠ 0)
8078, 79recrecd 10836 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = 𝐵)
8178mulid2d 10096 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) = 𝐵)
8280, 81eqtr4d 2688 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = (1 · 𝐵))
8312nnge1d 11101 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ≤ 𝑎)
84 1red 10093 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ∈ ℝ)
8584, 22, 56lemul1d 11953 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 ≤ 𝑎 ↔ (1 · 𝐵) ≤ (𝑎 · 𝐵)))
8683, 85mpbid 222 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) ≤ (𝑎 · 𝐵))
8782, 86eqbrtrd 4707 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ≤ (𝑎 · 𝐵))
8864, 68, 66, 77, 87letrd 10232 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (𝑎 · 𝐵))
8955, 64, 66, 67, 88ltletrd 10235 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (𝑎 · 𝐵))
9051, 89eqbrtrd 4707 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵))
9134abscld 14219 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ)
9212nngt0d 11102 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < 𝑎)
93 ltmul2 10912 . . . . . . 7 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9491, 65, 22, 92, 93syl112anc 1370 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9590, 94mpbird 247 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵)
9622, 22remulcld 10108 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℝ)
9722, 15msqgt0d 10633 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑎 · 𝑎))
9897gt0ne0d 10630 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ≠ 0)
9996, 98rereccld 10890 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ∈ ℝ)
100 qdencl 15496 . . . . . . . . . . 11 ((𝑏 / 𝑎) ∈ ℚ → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
10117, 100syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
102101nnred 11073 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℝ)
103102, 102remulcld 10108 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ)
104101nnne0d 11103 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≠ 0)
105102, 104msqgt0d 10633 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
106105gt0ne0d 10630 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≠ 0)
107103, 106rereccld 10890 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∈ ℝ)
10822, 15rereccld 10890 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝑎) ∈ ℝ)
109 max1 12054 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11022, 69, 109syl2anc 694 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11119, 63lerecd 11929 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎)))
112110, 111mpbid 222 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎))
11355, 64, 108, 67, 112ltletrd 10235 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / 𝑎))
11428, 28, 28, 15, 15divdiv1d 10870 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (𝑎 / (𝑎 · 𝑎)))
11528, 15dividd 10837 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / 𝑎) = 1)
116115oveq1d 6705 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (1 / 𝑎))
11796recnd 10106 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℂ)
11828, 117, 98divrecd 10842 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / (𝑎 · 𝑎)) = (𝑎 · (1 / (𝑎 · 𝑎))))
119114, 116, 1183eqtr3rd 2694 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (1 / (𝑎 · 𝑎))) = (1 / 𝑎))
120113, 51, 1193brtr4d 4717 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎))))
121 ltmul2 10912 . . . . . . . . 9 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ (1 / (𝑎 · 𝑎)) ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
12291, 99, 22, 92, 121syl112anc 1370 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
123120, 122mpbird 247 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)))
1249nnzd 11519 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℤ)
125 divdenle 15504 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℕ) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
126124, 12, 125syl2anc 694 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
127101nnnn0d 11389 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ0)
128127nn0ge0d 11392 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (denom‘(𝑏 / 𝑎)))
129 le2msq 10961 . . . . . . . . . 10 ((((denom‘(𝑏 / 𝑎)) ∈ ℝ ∧ 0 ≤ (denom‘(𝑏 / 𝑎))) ∧ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎)) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
130102, 128, 22, 24, 129syl22anc 1367 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
131126, 130mpbid 222 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎))
132 lerec 10944 . . . . . . . . 9 (((((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ ∧ 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∧ ((𝑎 · 𝑎) ∈ ℝ ∧ 0 < (𝑎 · 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
133103, 105, 96, 97, 132syl22anc 1367 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
134131, 133mpbid 222 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
13591, 99, 107, 123, 134ltletrd 10235 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
136101nncnd 11074 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℂ)
137 2nn0 11347 . . . . . . . 8 2 ∈ ℕ0
138 expneg 12908 . . . . . . . 8 (((denom‘(𝑏 / 𝑎)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
139136, 137, 138sylancl 695 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
140136sqvald 13045 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑2) = ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
141140oveq2d 6706 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎))↑2)) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
142139, 141eqtrd 2685 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
143135, 142breqtrrd 4713 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))
144 breq2 4689 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → (0 < 𝑥 ↔ 0 < (𝑏 / 𝑎)))
145 oveq1 6697 . . . . . . . . 9 (𝑥 = (𝑏 / 𝑎) → (𝑥𝐴) = ((𝑏 / 𝑎) − 𝐴))
146145fveq2d 6233 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → (abs‘(𝑥𝐴)) = (abs‘((𝑏 / 𝑎) − 𝐴)))
147146breq1d 4695 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵))
148 fveq2 6229 . . . . . . . . 9 (𝑥 = (𝑏 / 𝑎) → (denom‘𝑥) = (denom‘(𝑏 / 𝑎)))
149148oveq1d 6705 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → ((denom‘𝑥)↑-2) = ((denom‘(𝑏 / 𝑎))↑-2))
150146, 149breq12d 4698 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2) ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2)))
151144, 147, 1503anbi123d 1439 . . . . . 6 (𝑥 = (𝑏 / 𝑎) → ((0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)) ↔ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))))
152151rspcev 3340 . . . . 5 (((𝑏 / 𝑎) ∈ ℚ ∧ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
15317, 21, 95, 143, 152syl13anc 1368 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
154153ex 449 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
155154rexlimdvva 3067 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
1568, 155mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  ifcif 4119   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cq 11826  +crp 11870  cfl 12631  cexp 12900  abscabs 14018  denomcdenom 15489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ico 12219  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-numer 15490  df-denom 15491
This theorem is referenced by:  irrapxlem6  37708
  Copyright terms: Public domain W3C validator