Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem1 Structured version   Visualization version   GIF version

Theorem irrapxlem1 37886
Description: Lemma for irrapx1 37892. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 37881 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzssuz 12573 . . . 4 (0...𝐵) ⊆ (ℤ‘0)
2 uzssz 11897 . . . . 5 (ℤ‘0) ⊆ ℤ
3 zssre 11574 . . . . 5 ℤ ⊆ ℝ
42, 3sstri 3751 . . . 4 (ℤ‘0) ⊆ ℝ
51, 4sstri 3751 . . 3 (0...𝐵) ⊆ ℝ
65a1i 11 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...𝐵) ⊆ ℝ)
7 ovexd 6841 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ∈ V)
8 nnm1nn0 11524 . . . . 5 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℕ0)
98adantl 473 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ ℕ0)
10 nn0uz 11913 . . . 4 0 = (ℤ‘0)
119, 10syl6eleq 2847 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘0))
12 nnz 11589 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
1312adantl 473 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
14 nnre 11217 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1514adantl 473 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
1615ltm1d 11146 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) < 𝐵)
17 fzsdom2 13405 . . 3 ((((𝐵 − 1) ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ) ∧ (𝐵 − 1) < 𝐵) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1811, 13, 16, 17syl21anc 1476 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1914ad2antlr 765 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
20 rpre 12030 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2120ad2antrr 764 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
22 elfzelz 12533 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
2322zred 11672 . . . . . . . . 9 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℝ)
2423adantl 473 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝑎 ∈ ℝ)
2521, 24remulcld 10260 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐴 · 𝑎) ∈ ℝ)
26 1rp 12027 . . . . . . 7 1 ∈ ℝ+
27 modcl 12864 . . . . . . 7 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2825, 26, 27sylancl 697 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2919, 28remulcld 10260 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ)
3029flcld 12791 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ)
3119recnd 10258 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
3231mul01d 10425 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) = 0)
33 modge0 12870 . . . . . . . . . 10 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ ((𝐴 · 𝑎) mod 1))
3425, 26, 33sylancl 697 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ ((𝐴 · 𝑎) mod 1))
35 0red 10231 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ∈ ℝ)
36 nngt0 11239 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
3736ad2antlr 765 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 < 𝐵)
38 lemul2 11066 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
3935, 28, 19, 37, 38syl112anc 1481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
4034, 39mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4132, 40eqbrtrrd 4826 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4235, 29lenltd 10373 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)) ↔ ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0))
4341, 42mpbid 222 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0)
44 0z 11578 . . . . . . 7 0 ∈ ℤ
45 fllt 12799 . . . . . . 7 (((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ ∧ 0 ∈ ℤ) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4629, 44, 45sylancl 697 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4743, 46mtbid 313 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0)
4830zred 11672 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℝ)
4935, 48lenltd 10373 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ↔ ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
5047, 49mpbird 247 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))))
51 elnn0z 11580 . . . 4 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1)))))
5230, 50, 51sylanbrc 701 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0)
538ad2antlr 765 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℕ0)
54 flle 12792 . . . . . . 7 ((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
5529, 54syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
56 modlt 12871 . . . . . . . . 9 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) < 1)
5725, 26, 56sylancl 697 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) < 1)
58 1red 10245 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 1 ∈ ℝ)
59 ltmul2 11064 . . . . . . . . 9 ((((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6028, 58, 19, 37, 59syl112anc 1481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6157, 60mpbid 222 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1))
6231mulid1d 10247 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 1) = 𝐵)
6361, 62breqtrd 4828 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < 𝐵)
6448, 29, 19, 55, 63lelttrd 10385 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 𝐵)
65 nncn 11218 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
66 ax-1cn 10184 . . . . . . 7 1 ∈ ℂ
67 npcan 10480 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
6865, 66, 67sylancl 697 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 − 1) + 1) = 𝐵)
6968ad2antlr 765 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 − 1) + 1) = 𝐵)
7064, 69breqtrrd 4830 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1))
7112ad2antlr 765 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℤ)
72 1z 11597 . . . . . 6 1 ∈ ℤ
73 zsubcl 11609 . . . . . 6 ((𝐵 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐵 − 1) ∈ ℤ)
7471, 72, 73sylancl 697 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℤ)
75 zleltp1 11618 . . . . 5 (((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7630, 74, 75syl2anc 696 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7770, 76mpbird 247 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1))
78 elfz2nn0 12622 . . 3 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)) ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ0 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1)))
7952, 53, 77, 78syl3anbrc 1429 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)))
80 oveq2 6819 . . . . 5 (𝑎 = 𝑥 → (𝐴 · 𝑎) = (𝐴 · 𝑥))
8180oveq1d 6826 . . . 4 (𝑎 = 𝑥 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑥) mod 1))
8281oveq2d 6827 . . 3 (𝑎 = 𝑥 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑥) mod 1)))
8382fveq2d 6354 . 2 (𝑎 = 𝑥 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))))
84 oveq2 6819 . . . . 5 (𝑎 = 𝑦 → (𝐴 · 𝑎) = (𝐴 · 𝑦))
8584oveq1d 6826 . . . 4 (𝑎 = 𝑦 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑦) mod 1))
8685oveq2d 6827 . . 3 (𝑎 = 𝑦 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑦) mod 1)))
8786fveq2d 6354 . 2 (𝑎 = 𝑦 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
886, 7, 18, 79, 83, 87fphpdo 37881 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137  wrex 3049  wss 3713   class class class wbr 4802  cfv 6047  (class class class)co 6811  csdm 8118  cc 10124  cr 10125  0cc0 10126  1c1 10127   + caddc 10129   · cmul 10131   < clt 10264  cle 10265  cmin 10456  cn 11210  0cn0 11482  cz 11567  cuz 11877  +crp 12023  ...cfz 12517  cfl 12783   mod cmo 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-inf 8512  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-n0 11483  df-xnn0 11554  df-z 11568  df-uz 11878  df-rp 12024  df-fz 12518  df-fl 12785  df-mod 12861  df-hash 13310
This theorem is referenced by:  irrapxlem2  37887
  Copyright terms: Public domain W3C validator