MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipsubdi Structured version   Visualization version   GIF version

Theorem ipsubdi 20190
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
Assertion
Ref Expression
ipsubdi ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)))

Proof of Theorem ipsubdi
StepHypRef Expression
1 simpl 474 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 simpr1 1234 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
3 phllmod 20177 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
43adantr 472 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
5 lmodgrp 19072 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
64, 5syl 17 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ Grp)
7 simpr2 1236 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
8 simpr3 1238 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
9 phllmhm.v . . . . . . 7 𝑉 = (Base‘𝑊)
10 ipsubdir.m . . . . . . 7 = (-g𝑊)
119, 10grpsubcl 17696 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝐶𝑉) → (𝐵 𝐶) ∈ 𝑉)
126, 7, 8, 11syl3anc 1477 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 𝐶) ∈ 𝑉)
13 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 eqid 2760 . . . . . 6 (+g𝑊) = (+g𝑊)
16 eqid 2760 . . . . . 6 (+g𝐹) = (+g𝐹)
1713, 14, 9, 15, 16ipdi 20187 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉 ∧ (𝐵 𝐶) ∈ 𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)))
181, 2, 12, 8, 17syl13anc 1479 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)))
199, 15, 10grpnpcan 17708 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝐶𝑉) → ((𝐵 𝐶)(+g𝑊)𝐶) = 𝐵)
206, 7, 8, 19syl3anc 1477 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐵 𝐶)(+g𝑊)𝐶) = 𝐵)
2120oveq2d 6829 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = (𝐴 , 𝐵))
2218, 21eqtr3d 2796 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))
2313lmodfgrp 19074 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
244, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ Grp)
25 eqid 2760 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
2613, 14, 9, 25ipcl 20180 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
271, 2, 7, 26syl3anc 1477 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
2813, 14, 9, 25ipcl 20180 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
291, 2, 8, 28syl3anc 1477 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3013, 14, 9, 25ipcl 20180 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉 ∧ (𝐵 𝐶) ∈ 𝑉) → (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))
311, 2, 12, 30syl3anc 1477 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))
32 ipsubdir.s . . . . 5 𝑆 = (-g𝐹)
3325, 16, 32grpsubadd 17704 . . . 4 ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)) ↔ ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)))
3424, 27, 29, 31, 33syl13anc 1479 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)) ↔ ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)))
3522, 34mpbird 247 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)))
3635eqcomd 2766 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  Scalarcsca 16146  ·𝑖cip 16148  Grpcgrp 17623  -gcsg 17625  LModclmod 19065  PreHilcphl 20171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-ghm 17859  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-rnghom 18917  df-staf 19047  df-srng 19048  df-lmod 19067  df-lmhm 19224  df-lvec 19305  df-sra 19374  df-rgmod 19375  df-phl 20173
This theorem is referenced by:  ip2subdi  20191  ip2eq  20200  cphsubdi  23209
  Copyright terms: Public domain W3C validator