Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodfac Structured version   Visualization version   GIF version

Theorem iprodfac 31961
 Description: An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
iprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem iprodfac
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11936 . . 3 ℕ = (ℤ‘1)
2 1zzd 11620 . . 3 (𝐴 ∈ ℕ0 → 1 ∈ ℤ)
3 facne0 13287 . . 3 (𝐴 ∈ ℕ0 → (!‘𝐴) ≠ 0)
4 eqid 2760 . . . 4 (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥)))) = (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))
54faclim 31960 . . 3 (𝐴 ∈ ℕ0 → seq1( · , (𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))) ⇝ (!‘𝐴))
6 oveq2 6822 . . . . . . . 8 (𝑥 = 𝑘 → (1 / 𝑥) = (1 / 𝑘))
76oveq2d 6830 . . . . . . 7 (𝑥 = 𝑘 → (1 + (1 / 𝑥)) = (1 + (1 / 𝑘)))
87oveq1d 6829 . . . . . 6 (𝑥 = 𝑘 → ((1 + (1 / 𝑥))↑𝐴) = ((1 + (1 / 𝑘))↑𝐴))
9 oveq2 6822 . . . . . . 7 (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘))
109oveq2d 6830 . . . . . 6 (𝑥 = 𝑘 → (1 + (𝐴 / 𝑥)) = (1 + (𝐴 / 𝑘)))
118, 10oveq12d 6832 . . . . 5 (𝑥 = 𝑘 → (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
12 ovex 6842 . . . . 5 (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ V
1311, 4, 12fvmpt 6445 . . . 4 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
1413adantl 473 . . 3 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (((1 + (1 / 𝑥))↑𝐴) / (1 + (𝐴 / 𝑥))))‘𝑘) = (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
15 1rp 12049 . . . . . . . 8 1 ∈ ℝ+
1615a1i 11 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℝ+)
17 simpr 479 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1817nnrpd 12083 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
1918rpreccld 12095 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
2016, 19rpaddcld 12100 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
21 nn0z 11612 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2221adantr 472 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
2320, 22rpexpcld 13246 . . . . 5 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝐴) ∈ ℝ+)
24 1cnd 10268 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 1 ∈ ℂ)
25 nn0nndivcl 11574 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ)
2625recnd 10280 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
2724, 26addcomd 10450 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) = ((𝐴 / 𝑘) + 1))
28 nn0ge0div 11658 . . . . . . 7 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → 0 ≤ (𝐴 / 𝑘))
2925, 28ge0p1rpd 12115 . . . . . 6 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℝ+)
3027, 29eqeltrd 2839 . . . . 5 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (1 + (𝐴 / 𝑘)) ∈ ℝ+)
3123, 30rpdivcld 12102 . . . 4 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℝ+)
3231rpcnd 12087 . . 3 ((𝐴 ∈ ℕ0𝑘 ∈ ℕ) → (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) ∈ ℂ)
331, 2, 3, 5, 14, 32iprodn0 14889 . 2 (𝐴 ∈ ℕ0 → ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))) = (!‘𝐴))
3433eqcomd 2766 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6814  1c1 10149   + caddc 10151   / cdiv 10896  ℕcn 11232  ℕ0cn0 11504  ℤcz 11589  ℝ+crp 12045  ↑cexp 13074  !cfa 13274  ∏cprod 14854 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-fac 13275  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-prod 14855 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator