MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodclim3 Structured version   Visualization version   GIF version

Theorem iprodclim3 14937
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodclim3.1 𝑍 = (ℤ𝑀)
iprodclim3.2 (𝜑𝑀 ∈ ℤ)
iprodclim3.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
iprodclim3.4 (𝜑𝐹 ∈ dom ⇝ )
iprodclim3.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodclim3.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
iprodclim3 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝐴,𝑛,𝑦   𝑗,𝐹   𝑗,𝑘,𝜑   𝑘,𝑛,𝜑,𝑦   𝑗,𝑀   𝑦,𝑀   𝜑,𝑛,𝑦   𝑗,𝑍,𝑘   𝑛,𝑍,𝑦   𝑘,𝑀
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑦,𝑘,𝑛)   𝑀(𝑛)

Proof of Theorem iprodclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodclim3.4 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 14493 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 208 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 prodfc 14882 . . . 4 𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ∏𝑘𝑍 𝐴
5 iprodclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 iprodclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 iprodclim3.3 . . . . 5 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
8 eqidd 2772 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
9 iprodclim3.5 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
10 eqid 2771 . . . . . . 7 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
119, 10fmptd 6527 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
1211ffvelrnda 6502 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
135, 6, 7, 8, 12iprod 14875 . . . 4 (𝜑 → ∏𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
144, 13syl5eqr 2819 . . 3 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
15 seqex 13010 . . . . . . 7 seq𝑀( · , (𝑘𝑍𝐴)) ∈ V
1615a1i 11 . . . . . 6 (𝜑 → seq𝑀( · , (𝑘𝑍𝐴)) ∈ V)
17 iprodclim3.6 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
18 fzssuz 12589 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1918, 5sseqtr4i 3787 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
20 resmpt 5590 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2119, 20ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2221fveq1i 6333 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
23 fvres 6348 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
2422, 23syl5reqr 2820 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2524prodeq2i 14856 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
26 prodfc 14882 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
2725, 26eqtri 2793 . . . . . . . 8 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
28 eqidd 2772 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
29 simpr 471 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
3029, 5syl6eleq 2860 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
31 elfzuz 12545 . . . . . . . . . . . 12 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3231, 5syl6eleqr 2861 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3332, 12sylan2 580 . . . . . . . . . 10 ((𝜑𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3433adantlr 694 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3528, 30, 34fprodser 14886 . . . . . . . 8 ((𝜑𝑗𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3627, 35syl5eqr 2819 . . . . . . 7 ((𝜑𝑗𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3717, 36eqtr2d 2806 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
385, 16, 1, 6, 37climeq 14506 . . . . 5 (𝜑 → (seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3938iotabidv 6015 . . . 4 (𝜑 → (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
40 df-fv 6039 . . . 4 ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥)
41 df-fv 6039 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4239, 40, 413eqtr4g 2830 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4314, 42eqtrd 2805 . 2 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
443, 43breqtrrd 4814 1 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wex 1852  wcel 2145  wne 2943  wrex 3062  Vcvv 3351  wss 3723   class class class wbr 4786  cmpt 4863  dom cdm 5249  cres 5251  cio 5992  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138   · cmul 10143  cz 11579  cuz 11888  ...cfz 12533  seqcseq 13008  cli 14423  cprod 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-prod 14843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator