![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iporthcom | Structured version Visualization version GIF version |
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
Ref | Expression |
---|---|
iporthcom | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | phlsrng 20198 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
3 | 2 | 3ad2ant1 1128 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ *-Ring) |
4 | eqid 2760 | . . . . 5 ⊢ (*rf‘𝐹) = (*rf‘𝐹) | |
5 | eqid 2760 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | 4, 5 | srngf1o 19076 | . . . 4 ⊢ (𝐹 ∈ *-Ring → (*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹)) |
7 | f1of1 6298 | . . . 4 ⊢ ((*rf‘𝐹):(Base‘𝐹)–1-1-onto→(Base‘𝐹) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) | |
8 | 3, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹)) |
9 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
10 | phllmhm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
11 | 1, 9, 10, 5 | ipcl 20200 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
12 | phllmod 20197 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
13 | 12 | 3ad2ant1 1128 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ LMod) |
14 | ip0l.z | . . . . 5 ⊢ 𝑍 = (0g‘𝐹) | |
15 | 1, 5, 14 | lmod0cl 19111 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝐹)) |
16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑍 ∈ (Base‘𝐹)) |
17 | f1fveq 6683 | . . 3 ⊢ (((*rf‘𝐹):(Base‘𝐹)–1-1→(Base‘𝐹) ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ 𝑍 ∈ (Base‘𝐹))) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) | |
18 | 8, 11, 16, 17 | syl12anc 1475 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐴 , 𝐵) = 𝑍)) |
19 | eqid 2760 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
20 | 5, 19, 4 | stafval 19070 | . . . . 5 ⊢ ((𝐴 , 𝐵) ∈ (Base‘𝐹) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
21 | 11, 20 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*𝑟‘𝐹)‘(𝐴 , 𝐵))) |
22 | 1, 9, 10, 19 | ipcj 20201 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
23 | 21, 22 | eqtrd 2794 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) |
24 | 5, 19, 4 | stafval 19070 | . . . . 5 ⊢ (𝑍 ∈ (Base‘𝐹) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
25 | 16, 24 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = ((*𝑟‘𝐹)‘𝑍)) |
26 | 19, 14 | srng0 19082 | . . . . 5 ⊢ (𝐹 ∈ *-Ring → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
27 | 3, 26 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*𝑟‘𝐹)‘𝑍) = 𝑍) |
28 | 25, 27 | eqtrd 2794 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((*rf‘𝐹)‘𝑍) = 𝑍) |
29 | 23, 28 | eqeq12d 2775 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((*rf‘𝐹)‘(𝐴 , 𝐵)) = ((*rf‘𝐹)‘𝑍) ↔ (𝐵 , 𝐴) = 𝑍)) |
30 | 18, 29 | bitr3d 270 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 –1-1→wf1 6046 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 *𝑟cstv 16165 Scalarcsca 16166 ·𝑖cip 16168 0gc0g 16322 *rfcstf 19065 *-Ringcsr 19066 LModclmod 19085 PreHilcphl 20191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-tpos 7522 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-grp 17646 df-ghm 17879 df-mgp 18710 df-ur 18722 df-ring 18769 df-oppr 18843 df-rnghom 18937 df-staf 19067 df-srng 19068 df-lmod 19087 df-lmhm 19244 df-lvec 19325 df-sra 19394 df-rgmod 19395 df-phl 20193 |
This theorem is referenced by: ocvocv 20237 lsmcss 20258 cphorthcom 23221 |
Copyright terms: Public domain | W3C validator |