Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipolerval Structured version   Visualization version   GIF version

Theorem ipolerval 17203
 Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipoval.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipolerval (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐼,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ipolerval
StepHypRef Expression
1 simpl 472 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) → {𝑥, 𝑦} ⊆ 𝐹)
2 vex 3234 . . . . . . . 8 𝑥 ∈ V
3 vex 3234 . . . . . . . 8 𝑦 ∈ V
42, 3prss 4383 . . . . . . 7 ((𝑥𝐹𝑦𝐹) ↔ {𝑥, 𝑦} ⊆ 𝐹)
51, 4sylibr 224 . . . . . 6 (({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦) → (𝑥𝐹𝑦𝐹))
65ssopab2i 5032 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐹𝑦𝐹)}
7 df-xp 5149 . . . . 5 (𝐹 × 𝐹) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐹𝑦𝐹)}
86, 7sseqtr4i 3671 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ (𝐹 × 𝐹)
9 sqxpexg 7005 . . . 4 (𝐹𝑉 → (𝐹 × 𝐹) ∈ V)
10 ssexg 4837 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ⊆ (𝐹 × 𝐹) ∧ (𝐹 × 𝐹) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V)
118, 9, 10sylancr 696 . . 3 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V)
12 ipostr 17200 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}) Struct ⟨1, 11⟩
13 pleid 16096 . . . 4 le = Slot (le‘ndx)
14 snsspr1 4377 . . . . 5 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩} ⊆ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}
15 ssun2 3810 . . . . 5 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩} ⊆ ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})
1614, 15sstri 3645 . . . 4 {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩} ⊆ ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})
1712, 13, 16strfv 15954 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} ∈ V → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
1811, 17syl 17 . 2 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
19 ipoval.i . . . 4 𝐼 = (toInc‘𝐹)
20 eqid 2651 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}
2119, 20ipoval 17201 . . 3 (𝐹𝑉𝐼 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩}))
2221fveq2d 6233 . 2 (𝐹𝑉 → (le‘𝐼) = (le‘({⟨(Base‘ndx), 𝐹⟩, ⟨(TopSet‘ndx), (ordTop‘{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)})⟩} ∪ {⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)}⟩, ⟨(oc‘ndx), (𝑥𝐹 {𝑦𝐹 ∣ (𝑦𝑥) = ∅})⟩})))
2318, 22eqtr4d 2688 1 (𝐹𝑉 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐹𝑥𝑦)} = (le‘𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945  Vcvv 3231   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  {csn 4210  {cpr 4212  ⟨cop 4216  ∪ cuni 4468  {copab 4745   ↦ cmpt 4762   × cxp 5141  ‘cfv 5926  1c1 9975  ;cdc 11531  ndxcnx 15901  Basecbs 15904  TopSetcts 15994  lecple 15995  occoc 15996  ordTopcordt 16206  toInccipo 17198 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-tset 16007  df-ple 16008  df-ocomp 16010  df-ipo 17199 This theorem is referenced by:  ipotset  17204  ipole  17205  thlle  20089
 Copyright terms: Public domain W3C validator