MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsfi Structured version   Visualization version   GIF version

Theorem ipodrsfi 17356
Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
ipodrsfi (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑋

Proof of Theorem ipodrsfi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simp2 1131 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋𝐴)
2 ipodrscl 17355 . . . . . 6 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
3 eqid 2752 . . . . . . 7 (toInc‘𝐴) = (toInc‘𝐴)
43ipobas 17348 . . . . . 6 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
52, 4syl 17 . . . . 5 ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴)))
653ad2ant1 1127 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴)))
71, 6sseqtrd 3774 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴)))
8 eqid 2752 . . . 4 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
9 eqid 2752 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
108, 9drsdirfi 17131 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
117, 10syld3an2 1514 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
126rexeqdv 3276 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧))
1323ad2ant1 1127 . . . . . . . . 9 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 ∈ V)
1413adantr 472 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝐴 ∈ V)
151sselda 3736 . . . . . . . . 9 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑤𝑋) → 𝑤𝐴)
1615adantrl 754 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑤𝐴)
17 simprl 811 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑧𝐴)
183, 9ipole 17351 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑤𝐴𝑧𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
1914, 16, 17, 18syl3anc 1473 . . . . . . 7 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2019anassrs 683 . . . . . 6 (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) ∧ 𝑤𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2120ralbidva 3115 . . . . 5 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤𝑋 𝑤𝑧))
22 unissb 4613 . . . . 5 ( 𝑋𝑧 ↔ ∀𝑤𝑋 𝑤𝑧)
2321, 22syl6bbr 278 . . . 4 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 𝑋𝑧))
2423rexbidva 3179 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2512, 24bitr3d 270 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2611, 25mpbid 222 1 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  wrex 3043  Vcvv 3332  wss 3707   cuni 4580   class class class wbr 4796  cfv 6041  Fincfn 8113  Basecbs 16051  lecple 16142  Dirsetcdrs 17120  toInccipo 17344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-tset 16154  df-ple 16155  df-ocomp 16157  df-preset 17121  df-drs 17122  df-poset 17139  df-ipo 17345
This theorem is referenced by:  isacs3lem  17359  isnacs3  37767
  Copyright terms: Public domain W3C validator