![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipo0 | Structured version Visualization version GIF version |
Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ipo0 | ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2086 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | vex 3335 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | ideq 5422 | . . . . 5 ⊢ (𝑥 I 𝑥 ↔ 𝑥 = 𝑥) |
4 | 1, 3 | mpbir 221 | . . . 4 ⊢ 𝑥 I 𝑥 |
5 | poirr 5190 | . . . . 5 ⊢ (( I Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 I 𝑥) | |
6 | 5 | ex 449 | . . . 4 ⊢ ( I Po 𝐴 → (𝑥 ∈ 𝐴 → ¬ 𝑥 I 𝑥)) |
7 | 4, 6 | mt2i 132 | . . 3 ⊢ ( I Po 𝐴 → ¬ 𝑥 ∈ 𝐴) |
8 | 7 | eq0rdv 4114 | . 2 ⊢ ( I Po 𝐴 → 𝐴 = ∅) |
9 | po0 5194 | . . 3 ⊢ I Po ∅ | |
10 | poeq2 5183 | . . 3 ⊢ (𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅)) | |
11 | 9, 10 | mpbiri 248 | . 2 ⊢ (𝐴 = ∅ → I Po 𝐴) |
12 | 8, 11 | impbii 199 | 1 ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1624 ∈ wcel 2131 ∅c0 4050 class class class wbr 4796 I cid 5165 Po wpo 5177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-id 5166 df-po 5179 df-xp 5264 df-rel 5265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |