Step | Hyp | Ref
| Expression |
1 | | ipffval.3 |
. 2
⊢ · =
(·if‘𝑊) |
2 | | fveq2 6333 |
. . . . . 6
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊)) |
3 | | ipffval.1 |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
4 | 2, 3 | syl6eqr 2823 |
. . . . 5
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉) |
5 | | fveq2 6333 |
. . . . . . 7
⊢ (𝑔 = 𝑊 →
(·𝑖‘𝑔) =
(·𝑖‘𝑊)) |
6 | | ipffval.2 |
. . . . . . 7
⊢ , =
(·𝑖‘𝑊) |
7 | 5, 6 | syl6eqr 2823 |
. . . . . 6
⊢ (𝑔 = 𝑊 →
(·𝑖‘𝑔) = , ) |
8 | 7 | oveqd 6813 |
. . . . 5
⊢ (𝑔 = 𝑊 → (𝑥(·𝑖‘𝑔)𝑦) = (𝑥 , 𝑦)) |
9 | 4, 4, 8 | mpt2eq123dv 6868 |
. . . 4
⊢ (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
10 | | df-ipf 20189 |
. . . 4
⊢
·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
11 | | df-ov 6799 |
. . . . . . . 8
⊢ (𝑥 , 𝑦) = ( , ‘〈𝑥, 𝑦〉) |
12 | | fvrn0 6359 |
. . . . . . . 8
⊢ ( ,
‘〈𝑥, 𝑦〉) ∈ (ran , ∪
{∅}) |
13 | 11, 12 | eqeltri 2846 |
. . . . . . 7
⊢ (𝑥 , 𝑦) ∈ (ran , ∪
{∅}) |
14 | 13 | rgen2w 3074 |
. . . . . 6
⊢
∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥 , 𝑦) ∈ (ran , ∪
{∅}) |
15 | | eqid 2771 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
16 | 15 | fmpt2 7391 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) ↔
(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪
{∅})) |
17 | 14, 16 | mpbi 220 |
. . . . 5
⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪
{∅}) |
18 | 3 | fvexi 6345 |
. . . . . 6
⊢ 𝑉 ∈ V |
19 | 18, 18 | xpex 7113 |
. . . . 5
⊢ (𝑉 × 𝑉) ∈ V |
20 | 6 | fvexi 6345 |
. . . . . . 7
⊢ , ∈
V |
21 | 20 | rnex 7251 |
. . . . . 6
⊢ ran , ∈
V |
22 | | p0ex 4985 |
. . . . . 6
⊢ {∅}
∈ V |
23 | 21, 22 | unex 7107 |
. . . . 5
⊢ (ran
, ∪
{∅}) ∈ V |
24 | | fex2 7272 |
. . . . 5
⊢ (((𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅}) ∧
(𝑉 × 𝑉) ∈ V ∧ (ran , ∪
{∅}) ∈ V) → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ V) |
25 | 17, 19, 23, 24 | mp3an 1572 |
. . . 4
⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ V |
26 | 9, 10, 25 | fvmpt 6426 |
. . 3
⊢ (𝑊 ∈ V →
(·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
27 | | fvprc 6327 |
. . . . 5
⊢ (¬
𝑊 ∈ V →
(·if‘𝑊) = ∅) |
28 | | mpt20 6876 |
. . . . 5
⊢ (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)) = ∅ |
29 | 27, 28 | syl6eqr 2823 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(·if‘𝑊) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦))) |
30 | | fvprc 6327 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
(Base‘𝑊) =
∅) |
31 | 3, 30 | syl5eq 2817 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝑉 = ∅) |
32 | | mpt2eq12 6866 |
. . . . 5
⊢ ((𝑉 = ∅ ∧ 𝑉 = ∅) → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦))) |
33 | 31, 31, 32 | syl2anc 573 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦))) |
34 | 29, 33 | eqtr4d 2808 |
. . 3
⊢ (¬
𝑊 ∈ V →
(·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
35 | 26, 34 | pm2.61i 176 |
. 2
⊢
(·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
36 | 1, 35 | eqtri 2793 |
1
⊢ · =
(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |