MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdirilem Structured version   Visualization version   GIF version

Theorem ipdirilem 27812
Description: Lemma for ipdiri 27813. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipdiri.8 𝐴𝑋
ipdiri.9 𝐵𝑋
ipdiri.10 𝐶𝑋
Assertion
Ref Expression
ipdirilem ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))

Proof of Theorem ipdirilem
StepHypRef Expression
1 2cn 11129 . . . . . . 7 2 ∈ ℂ
2 2ne0 11151 . . . . . . 7 2 ≠ 0
31, 2recidi 10794 . . . . . 6 (2 · (1 / 2)) = 1
43oveq1i 6700 . . . . 5 ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (1𝑆(𝐴𝐺𝐵))
5 ip1i.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
65phnvi 27799 . . . . . 6 𝑈 ∈ NrmCVec
7 halfcn 11285 . . . . . . 7 (1 / 2) ∈ ℂ
8 ipdiri.8 . . . . . . . 8 𝐴𝑋
9 ipdiri.9 . . . . . . . 8 𝐵𝑋
10 ip1i.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
1210, 11nvgcl 27603 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
136, 8, 9, 12mp3an 1464 . . . . . . 7 (𝐴𝐺𝐵) ∈ 𝑋
141, 7, 133pm3.2i 1259 . . . . . 6 (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋)
15 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
1610, 15nvsass 27611 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋)) → ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵))))
176, 14, 16mp2an 708 . . . . 5 ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))
1810, 15nvsid 27610 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → (1𝑆(𝐴𝐺𝐵)) = (𝐴𝐺𝐵))
196, 13, 18mp2an 708 . . . . 5 (1𝑆(𝐴𝐺𝐵)) = (𝐴𝐺𝐵)
204, 17, 193eqtr3i 2681 . . . 4 (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵))) = (𝐴𝐺𝐵)
2120oveq1i 6700 . . 3 ((2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))𝑃𝐶) = ((𝐴𝐺𝐵)𝑃𝐶)
22 ip1i.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
2310, 15nvscl 27609 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((1 / 2)𝑆(𝐴𝐺𝐵)) ∈ 𝑋)
246, 7, 13, 23mp3an 1464 . . . 4 ((1 / 2)𝑆(𝐴𝐺𝐵)) ∈ 𝑋
25 ipdiri.10 . . . 4 𝐶𝑋
2610, 11, 15, 22, 5, 24, 25ip2i 27811 . . 3 ((2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))𝑃𝐶) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
2721, 26eqtr3i 2675 . 2 ((𝐴𝐺𝐵)𝑃𝐶) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
28 neg1cn 11162 . . . . . 6 -1 ∈ ℂ
2910, 15nvscl 27609 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
306, 28, 9, 29mp3an 1464 . . . . 5 (-1𝑆𝐵) ∈ 𝑋
3110, 11nvgcl 27603 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
326, 8, 30, 31mp3an 1464 . . . 4 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
3310, 15nvscl 27609 . . . 4 ((𝑈 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → ((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))) ∈ 𝑋)
346, 7, 32, 33mp3an 1464 . . 3 ((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))) ∈ 𝑋
3510, 11, 15, 22, 5, 24, 34, 25ip1i 27810 . 2 (((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) + ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶)) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
36 eqid 2651 . . . . . . . . . . . 12 (1st𝑈) = (1st𝑈)
3736nvvc 27598 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
386, 37ax-mp 5 . . . . . . . . . 10 (1st𝑈) ∈ CVecOLD
3911vafval 27586 . . . . . . . . . . 11 𝐺 = (1st ‘(1st𝑈))
4039vcablo 27552 . . . . . . . . . 10 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
4138, 40ax-mp 5 . . . . . . . . 9 𝐺 ∈ AbelOp
428, 9pm3.2i 470 . . . . . . . . 9 (𝐴𝑋𝐵𝑋)
438, 30pm3.2i 470 . . . . . . . . 9 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)
4410, 11bafval 27587 . . . . . . . . . 10 𝑋 = ran 𝐺
4544ablo4 27532 . . . . . . . . 9 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵))))
4641, 42, 43, 45mp3an 1464 . . . . . . . 8 ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵)))
4715smfval 27588 . . . . . . . . . . 11 𝑆 = (2nd ‘(1st𝑈))
4839, 47, 44vc2OLD 27551 . . . . . . . . . 10 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
4938, 8, 48mp2an 708 . . . . . . . . 9 (𝐴𝐺𝐴) = (2𝑆𝐴)
50 eqid 2651 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
5110, 11, 15, 50nvrinv 27634 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(-1𝑆𝐵)) = (0vec𝑈))
526, 9, 51mp2an 708 . . . . . . . . 9 (𝐵𝐺(-1𝑆𝐵)) = (0vec𝑈)
5349, 52oveq12i 6702 . . . . . . . 8 ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵))) = ((2𝑆𝐴)𝐺(0vec𝑈))
5410, 15nvscl 27609 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ 𝐴𝑋) → (2𝑆𝐴) ∈ 𝑋)
556, 1, 8, 54mp3an 1464 . . . . . . . . 9 (2𝑆𝐴) ∈ 𝑋
5610, 11, 50nv0rid 27618 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (2𝑆𝐴) ∈ 𝑋) → ((2𝑆𝐴)𝐺(0vec𝑈)) = (2𝑆𝐴))
576, 55, 56mp2an 708 . . . . . . . 8 ((2𝑆𝐴)𝐺(0vec𝑈)) = (2𝑆𝐴)
5846, 53, 573eqtri 2677 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = (2𝑆𝐴)
5958oveq2i 6701 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆(2𝑆𝐴))
607, 1, 83pm3.2i 1259 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴𝑋)
6110, 15nvsass 27611 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴𝑋)) → (((1 / 2) · 2)𝑆𝐴) = ((1 / 2)𝑆(2𝑆𝐴)))
626, 60, 61mp2an 708 . . . . . 6 (((1 / 2) · 2)𝑆𝐴) = ((1 / 2)𝑆(2𝑆𝐴))
6359, 62eqtr4i 2676 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2) · 2)𝑆𝐴)
647, 13, 323pm3.2i 1259 . . . . . 6 ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6510, 11, 15nvdi 27613 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))
666, 64, 65mp2an 708 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))
67 ax-1cn 10032 . . . . . . . 8 1 ∈ ℂ
6867, 1, 2divcan1i 10807 . . . . . . 7 ((1 / 2) · 2) = 1
6968oveq1i 6700 . . . . . 6 (((1 / 2) · 2)𝑆𝐴) = (1𝑆𝐴)
7010, 15nvsid 27610 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
716, 8, 70mp2an 708 . . . . . 6 (1𝑆𝐴) = 𝐴
7269, 71eqtri 2673 . . . . 5 (((1 / 2) · 2)𝑆𝐴) = 𝐴
7363, 66, 723eqtr3i 2681 . . . 4 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))) = 𝐴
7473oveq1i 6700 . . 3 ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) = (𝐴𝑃𝐶)
7528, 7mulcomi 10084 . . . . . . . . 9 (-1 · (1 / 2)) = ((1 / 2) · -1)
7675oveq1i 6700 . . . . . . . 8 ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵)))
7728, 7, 323pm3.2i 1259 . . . . . . . . 9 (-1 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
7810, 15nvsass 27611 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))
796, 77, 78mp2an 708 . . . . . . . 8 ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))
807, 28, 323pm3.2i 1259 . . . . . . . . . 10 ((1 / 2) ∈ ℂ ∧ -1 ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
8110, 15nvsass 27611 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ -1 ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵)))))
826, 80, 81mp2an 708 . . . . . . . . 9 (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵))))
8328, 8, 303pm3.2i 1259 . . . . . . . . . . . 12 (-1 ∈ ℂ ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)
8410, 11, 15nvdi 27613 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)) → (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵))))
856, 83, 84mp2an 708 . . . . . . . . . . 11 (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵)))
86 neg1mulneg1e1 11283 . . . . . . . . . . . . . 14 (-1 · -1) = 1
8786oveq1i 6700 . . . . . . . . . . . . 13 ((-1 · -1)𝑆𝐵) = (1𝑆𝐵)
8828, 28, 93pm3.2i 1259 . . . . . . . . . . . . . 14 (-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐵𝑋)
8910, 15nvsass 27611 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐵𝑋)) → ((-1 · -1)𝑆𝐵) = (-1𝑆(-1𝑆𝐵)))
906, 88, 89mp2an 708 . . . . . . . . . . . . 13 ((-1 · -1)𝑆𝐵) = (-1𝑆(-1𝑆𝐵))
9110, 15nvsid 27610 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
926, 9, 91mp2an 708 . . . . . . . . . . . . 13 (1𝑆𝐵) = 𝐵
9387, 90, 923eqtr3i 2681 . . . . . . . . . . . 12 (-1𝑆(-1𝑆𝐵)) = 𝐵
9493oveq2i 6701 . . . . . . . . . . 11 ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺𝐵)
9585, 94eqtri 2673 . . . . . . . . . 10 (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺𝐵)
9695oveq2i 6701 . . . . . . . . 9 ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9782, 96eqtri 2673 . . . . . . . 8 (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9876, 79, 973eqtr3i 2681 . . . . . . 7 (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9998oveq2i 6701 . . . . . 6 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵)))
10010, 15nvscl 27609 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1016, 28, 8, 100mp3an 1464 . . . . . . . . 9 (-1𝑆𝐴) ∈ 𝑋
10210, 11nvgcl 27603 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)
1036, 101, 9, 102mp3an 1464 . . . . . . . 8 ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋
1047, 13, 1033pm3.2i 1259 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)
10510, 11, 15nvdi 27613 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)) → ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))))
1066, 104, 105mp2an 708 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵)))
10799, 106eqtr4i 2676 . . . . 5 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)))
108101, 9pm3.2i 470 . . . . . . . . 9 ((-1𝑆𝐴) ∈ 𝑋𝐵𝑋)
10944ablo4 27532 . . . . . . . . 9 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1𝑆𝐴) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)))
11041, 42, 108, 109mp3an 1464 . . . . . . . 8 ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵))
11110, 11, 15, 50nvrinv 27634 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
1126, 8, 111mp2an 708 . . . . . . . . . 10 (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈)
113112oveq1i 6700 . . . . . . . . 9 ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)) = ((0vec𝑈)𝐺(𝐵𝐺𝐵))
11410, 11nvgcl 27603 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐵𝑋) → (𝐵𝐺𝐵) ∈ 𝑋)
1156, 9, 9, 114mp3an 1464 . . . . . . . . . 10 (𝐵𝐺𝐵) ∈ 𝑋
11610, 11, 50nv0lid 27619 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺𝐵) ∈ 𝑋) → ((0vec𝑈)𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵))
1176, 115, 116mp2an 708 . . . . . . . . 9 ((0vec𝑈)𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵)
118113, 117eqtri 2673 . . . . . . . 8 ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵)
11939, 47, 44vc2OLD 27551 . . . . . . . . 9 (((1st𝑈) ∈ CVecOLD𝐵𝑋) → (𝐵𝐺𝐵) = (2𝑆𝐵))
12038, 9, 119mp2an 708 . . . . . . . 8 (𝐵𝐺𝐵) = (2𝑆𝐵)
121110, 118, 1203eqtri 2677 . . . . . . 7 ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = (2𝑆𝐵)
122121oveq2i 6701 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = ((1 / 2)𝑆(2𝑆𝐵))
1237, 1, 93pm3.2i 1259 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵𝑋)
12410, 15nvsass 27611 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵𝑋)) → (((1 / 2) · 2)𝑆𝐵) = ((1 / 2)𝑆(2𝑆𝐵)))
1256, 123, 124mp2an 708 . . . . . 6 (((1 / 2) · 2)𝑆𝐵) = ((1 / 2)𝑆(2𝑆𝐵))
12668oveq1i 6700 . . . . . 6 (((1 / 2) · 2)𝑆𝐵) = (1𝑆𝐵)
127122, 125, 1263eqtr2i 2679 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (1𝑆𝐵)
128107, 127, 923eqtri 2677 . . . 4 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = 𝐵
129128oveq1i 6700 . . 3 ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶) = (𝐵𝑃𝐶)
13074, 129oveq12i 6702 . 2 (((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) + ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶)) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))
13127, 35, 1303eqtr2i 2679 1 ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  1st c1st 7208  cc 9972  1c1 9975   + caddc 9977   · cmul 9979  -cneg 10305   / cdiv 10722  2c2 11108  AbelOpcablo 27526  CVecOLDcvc 27541  NrmCVeccnv 27567   +𝑣 cpv 27568  BaseSetcba 27569   ·𝑠OLD cns 27570  0veccn0v 27571  ·𝑖OLDcdip 27683  CPreHilOLDccphlo 27795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-dip 27684  df-ph 27796
This theorem is referenced by:  ipdiri  27813
  Copyright terms: Public domain W3C validator