![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdiri | Structured version Visualization version GIF version |
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ipdiri | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6799 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)) | |
2 | 1 | oveq1d 6807 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶)) |
3 | oveq1 6799 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝐴𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶)) | |
4 | 3 | oveq1d 6807 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶))) |
5 | 2, 4 | eqeq12d 2785 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))) |
6 | oveq2 6800 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
7 | 6 | oveq1d 6807 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶)) |
8 | oveq1 6799 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐵𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) | |
9 | 8 | oveq2d 6808 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))) |
10 | 7, 9 | eqeq12d 2785 | . 2 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)))) |
11 | oveq2 6800 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
12 | oveq2 6800 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
13 | oveq2 6800 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
14 | 12, 13 | oveq12d 6810 | . . 3 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))) |
15 | 11, 14 | eqeq12d 2785 | . 2 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐶) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) ↔ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))))) |
16 | ip1i.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
17 | ip1i.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
18 | ip1i.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
19 | ip1i.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
20 | ip1i.9 | . . 3 ⊢ 𝑈 ∈ CPreHilOLD | |
21 | eqid 2770 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
22 | 16, 21, 20 | elimph 28009 | . . 3 ⊢ if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) ∈ 𝑋 |
23 | 16, 21, 20 | elimph 28009 | . . 3 ⊢ if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) ∈ 𝑋 |
24 | 16, 21, 20 | elimph 28009 | . . 3 ⊢ if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) ∈ 𝑋 |
25 | 16, 17, 18, 19, 20, 22, 23, 24 | ipdirilem 28018 | . 2 ⊢ ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝐺if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = ((if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) + (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) |
26 | 5, 10, 15, 25 | dedth3h 4278 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ifcif 4223 ‘cfv 6031 (class class class)co 6792 + caddc 10140 +𝑣 cpv 27774 BaseSetcba 27775 ·𝑠OLD cns 27776 0veccn0v 27777 ·𝑖OLDcdip 27889 CPreHilOLDccphlo 28001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-sum 14624 df-grpo 27681 df-gid 27682 df-ginv 27683 df-ablo 27733 df-vc 27748 df-nv 27781 df-va 27784 df-ba 27785 df-sm 27786 df-0v 27787 df-nmcv 27789 df-dip 27890 df-ph 28002 |
This theorem is referenced by: ipasslem1 28020 ipasslem2 28021 ipasslem11 28029 dipdir 28031 |
Copyright terms: Public domain | W3C validator |