MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdiri Structured version   Visualization version   GIF version

Theorem ipdiri 28019
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ipdiri ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem ipdiri
StepHypRef Expression
1 oveq1 6799 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵))
21oveq1d 6807 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶))
3 oveq1 6799 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶))
43oveq1d 6807 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))
52, 4eqeq12d 2785 . 2 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶))))
6 oveq2 6800 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈))))
76oveq1d 6807 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶))
8 oveq1 6799 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (𝐵𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))
98oveq2d 6808 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)))
107, 9eqeq12d 2785 . 2 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))))
11 oveq2 6800 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
12 oveq2 6800 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
13 oveq2 6800 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
1412, 13oveq12d 6810 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈)))))
1511, 14eqeq12d 2785 . 2 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))))
16 ip1i.1 . . 3 𝑋 = (BaseSet‘𝑈)
17 ip1i.2 . . 3 𝐺 = ( +𝑣𝑈)
18 ip1i.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
19 ip1i.7 . . 3 𝑃 = (·𝑖OLD𝑈)
20 ip1i.9 . . 3 𝑈 ∈ CPreHilOLD
21 eqid 2770 . . . 4 (0vec𝑈) = (0vec𝑈)
2216, 21, 20elimph 28009 . . 3 if(𝐴𝑋, 𝐴, (0vec𝑈)) ∈ 𝑋
2316, 21, 20elimph 28009 . . 3 if(𝐵𝑋, 𝐵, (0vec𝑈)) ∈ 𝑋
2416, 21, 20elimph 28009 . . 3 if(𝐶𝑋, 𝐶, (0vec𝑈)) ∈ 𝑋
2516, 17, 18, 19, 20, 22, 23, 24ipdirilem 28018 . 2 ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
265, 10, 15, 25dedth3h 4278 1 ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1070   = wceq 1630  wcel 2144  ifcif 4223  cfv 6031  (class class class)co 6792   + caddc 10140   +𝑣 cpv 27774  BaseSetcba 27775   ·𝑠OLD cns 27776  0veccn0v 27777  ·𝑖OLDcdip 27889  CPreHilOLDccphlo 28001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-grpo 27681  df-gid 27682  df-ginv 27683  df-ablo 27733  df-vc 27748  df-nv 27781  df-va 27784  df-ba 27785  df-sm 27786  df-0v 27787  df-nmcv 27789  df-dip 27890  df-ph 28002
This theorem is referenced by:  ipasslem1  28020  ipasslem2  28021  ipasslem11  28029  dipdir  28031
  Copyright terms: Public domain W3C validator