![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
ipdi | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
2 | simpr2 1236 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
3 | simpr3 1238 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
4 | simpr1 1234 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.g | . . . . . 6 ⊢ + = (+g‘𝑊) | |
9 | ipdir.p | . . . . . 6 ⊢ ⨣ = (+g‘𝐹) | |
10 | 5, 6, 7, 8, 9 | ipdir 20186 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1479 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 + 𝐶) , 𝐴) = ((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) |
12 | 11 | fveq2d 6356 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴)))) |
13 | 5 | phlsrng 20178 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
14 | 13 | adantr 472 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ *-Ring) |
15 | eqid 2760 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
16 | 5, 6, 7, 15 | ipcl 20180 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
17 | 1, 2, 4, 16 | syl3anc 1477 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐴) ∈ (Base‘𝐹)) |
18 | 5, 6, 7, 15 | ipcl 20180 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
19 | 1, 3, 4, 18 | syl3anc 1477 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐶 , 𝐴) ∈ (Base‘𝐹)) |
20 | eqid 2760 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
21 | 20, 15, 9 | srngadd 19059 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ (𝐵 , 𝐴) ∈ (Base‘𝐹) ∧ (𝐶 , 𝐴) ∈ (Base‘𝐹)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
22 | 14, 17, 19, 21 | syl3anc 1477 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 , 𝐴) ⨣ (𝐶 , 𝐴))) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
23 | 12, 22 | eqtrd 2794 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴)))) |
24 | phllmod 20177 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
25 | 24 | adantr 472 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
26 | 7, 8 | lmodvacl 19079 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 + 𝐶) ∈ 𝑉) |
27 | 25, 2, 3, 26 | syl3anc 1477 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 + 𝐶) ∈ 𝑉) |
28 | 5, 6, 7, 20 | ipcj 20181 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 + 𝐶) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
29 | 1, 27, 4, 28 | syl3anc 1477 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘((𝐵 + 𝐶) , 𝐴)) = (𝐴 , (𝐵 + 𝐶))) |
30 | 5, 6, 7, 20 | ipcj 20181 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
31 | 1, 2, 4, 30 | syl3anc 1477 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
32 | 5, 6, 7, 20 | ipcj 20181 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
33 | 1, 3, 4, 32 | syl3anc 1477 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((*𝑟‘𝐹)‘(𝐶 , 𝐴)) = (𝐴 , 𝐶)) |
34 | 31, 33 | oveq12d 6831 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((*𝑟‘𝐹)‘(𝐵 , 𝐴)) ⨣ ((*𝑟‘𝐹)‘(𝐶 , 𝐴))) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
35 | 23, 29, 34 | 3eqtr3d 2802 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 *𝑟cstv 16145 Scalarcsca 16146 ·𝑖cip 16148 *-Ringcsr 19046 LModclmod 19065 PreHilcphl 20171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-ip 16161 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-grp 17626 df-ghm 17859 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-rnghom 18917 df-staf 19047 df-srng 19048 df-lmod 19067 df-lmhm 19224 df-lvec 19305 df-sra 19374 df-rgmod 19375 df-phl 20173 |
This theorem is referenced by: ip2di 20188 ipsubdi 20190 cphdi 23206 |
Copyright terms: Public domain | W3C validator |